
Intermediate R
1. Conditionals and Control Flow

Equality
The most basic form of comparison is equality. Let's briefly recap its syntax. The following statements

all evaluate to TRUE (feel free to try them out in the console).

3 == (2 + 1)

"intermediate" != "r"

TRUE != FALSE

"Rchitect" != "rchitect"

Notice from the last expression that R is case sensitive: "R" is not equal to "r". Keep this in mind

when solving the exercises in this chapter!

Greater and less than
Apart from equality operators, Filip also introduced the less than and greater

than operators: < and >. You can also add an equal sign to express less than or equal to or greater

than or equal to, respectively. Have a look at the following R expressions, that all evaluate to FALSE:

(1 + 2) > 4

"dog" < "Cats"

TRUE <= FALSE

Remember that for string comparison, R determines the greater than relationship based on

alphabetical order. Also, keep in mind that TRUE is treated as 1 for arithmetic, and FALSE is treated

as 0. Therefore, FALSE < TRUEis TRUE.

Compare vectors
You are already aware that R is very good with vectors. Without having to change anything about the

syntax, R's relational operators also work on vectors.

Let's go back to the example that was started in the video. You want to figure out whether your

activity on social media platforms have paid off and decide to look at your results for LinkedIn and

Facebook. The sample code in the editor initializes the vectors linkedin and facebook. Each of

the vectors contains the number of profile views your LinkedIn and Facebook profiles had over the

last seven days.

Compare matrices
R's ability to deal with different data structures for comparisons does not stop at vectors. Matrices

and relational operators also work together seamlessly!

Instead of in vectors (as in the previous exercise), the LinkedIn and Facebook data is now stored in a

matrix called views. The first row contains the LinkedIn information; the second row the Facebook

information. The original vectors facebook and linkedin are still available as well.

& and |
Before you work your way through the next exercises, have a look at the following R expressions. All

of them will evaluate to TRUE:

 TRUE & TRUE

 FALSE | TRUE

 5 <= 5 & 2 < 3

 3 < 4 | 7 < 6

Watch out: 3 < x < 7 to check if x is between 3 and 7 will not work; you'll need 3 < x & x <

7 for that.

In this exercise, you'll be working with the last variable. This variable equals the last value of

the linkedin vector that you've worked with previously. The linkedin vector represents the

number of LinkedIn views your profile had in the last seven days, remember? Both the

variables linkedin and last have already been defined in the editor.

Like relational operators, logical operators work perfectly fine with vectors and matrices.

Both the vectors linkedin and facebook are available again. Also a matrix - views - has been

defined; its first and second row correspond to the linkedin and facebook vectors, respectively.

Ready for some advanced queries to gain more insights into your social outreach?

Blend it all together
With the things you've learned by now, you're able to solve pretty cool problems.

Instead of recording the number of views for your own LinkedIn profile, suppose you conducted a

survey inside the company you're working for. You've asked every employee with a LinkedIn profile

how many visits their profile has had over the past seven days. You stored the results in a data frame

called li_df. This data frame is available in the workspace; type li_df in the console to check it

out.

The if statement
Before diving into some exercises on the if statement, have another look at its syntax:

if (condition) {

 expr

}

Remember your vectors with social profile views? Let's look at it from another angle.

The mediumvariable gives information about the social website; the num_views variable denotes

the actual number of views that particular medium had on the last day of your recordings. Both these

variables have already been defined in the editor.

Add an else
You can only use an else statement in combination with an if statement. The elsestatement does

not require a condition; its corresponding code is simply run if all of the preceding conditions in the

control structure are FALSE. Here's a recipe for its usage:

if (condition) {

 expr1

} else {

 expr2

}

It's important that the else keyword comes on the same line as the closing bracket of

the if part!

Both if statements that you coded in the previous exercises are already available in the editor. It's

now up to you to extend them with the appropriate else statements!

Customize further: else if
The else if statement allows you to further customize your control structure. You can add as

many else if statements as you like. Keep in mind that R ignores the remainder of the control

structure once a condition has been found that is TRUE and the corresponding expressions have

been executed. Here's an overview of the syntax to freshen your memory:

if (condition1) {

 expr1

} else if (condition2) {

 expr2

} else if (condition3) {

 expr3

} else {

 expr4

}

Again, It's important that the else if keywords comes on the same line as the closing

bracket of the previous part of the control construct!

You can do anything you want inside if-else constructs. You can even put in another set of conditional

statements. Examine the following code chunk:

if (number < 10) {

 if (number < 5) {

 result <- "extra small"

 } else {

 result <- "small"

 }

} else if (number < 100) {

 result <- "medium"

} else {

 result <- "large"

}

print(result)

Have a look at the following statements:

1. If number is set to 6, "small" gets printed to the console.

2. If number is set to 100, R prints out "medium".

3. If number is set to 4, "extra small" gets printed out to the console.

4. If number is set to 2500, R will generate an error, as result will not be defined.

Select the option that lists all the true statements.

2. Loops

Write a while loop
Let's get you started with building a while loop from the ground up. Have another look at its recipe:

while (condition) {

 expr }

Remember that the condition part of this recipe should become FALSE at some point during the

execution. Otherwise, the while loop will go on indefinitely. In DataCamp's learning interface, your

session will be disconnected in this case.

Have a look at the code on the right; it initializes the speed variables and already provides

a while loop template to get you started.

In the previous exercise, you simulated the interaction between a driver and a driver's assistant:

When the speed was too high, "Slow down!" got printed out to the console, resulting in a decrease of

your speed by 7 units.

There are several ways in which you could make your driver's assistant more advanced. For example,

the assistant could give you different messages based on your speed or provide you with a current

speed at a given moment.

A while loop similar to the one you've coded in the previous exercise is already available in the

editor. It prints out your current speed, but there's no code that decreases the speed variable yet,

which is pretty dangerous. Can you make the appropriate changes?

Stop the while loop: break
There are some very rare situations in which severe speeding is necessary: what if a hurricane is

approaching and you have to get away as quickly as possible? You don't want the driver's assistant

sending you speeding notifications in that scenario, right?

This seems like a great opportunity to include the break statement in the while loop you've been

working on. Remember that the break statement is a control statement. When R encounters it,

the while loop is abandoned completely.

Loop over a vector
In the previous video, Filip told you about two different strategies for using the for loop. To refresh

your memory, consider the following loops that are equivalent in R:

primes <- c(2, 3, 5, 7, 11, 13)

loop version 1

for (p in primes) {

 print(p)

}

loop version 2

for (i in 1:length(primes)) {

 print(primes[i])

}

Remember our linkedin vector? It's a vector that contains the number of views your LinkedIn

profile had in the last seven days. The linkedin vector has already been defined in the editor on

the right so that you can fully focus on the instructions!

Loop over a list
Looping over a list is just as easy and convenient as looping over a vector. There are again two

different approaches here:

primes_list <- list(2, 3, 5, 7, 11, 13)

loop version 1

for (p in primes_list) {

 print(p)

}

loop version 2

for (i in 1:length(primes_list)) {

 print(primes_list[[i]])

}

Notice that you need double square brackets - [[]] - to select the list elements in loop version 2.

Suppose you have a list of all sorts of information on New York City: its population size, the names of

the boroughs, and whether it is the capital of the United States. We've already prepared a

list nycwith all this information in the editor (source: Wikipedia).

Loop over a matrix
In your workspace, there's a matrix ttt, that represents the status of a tic-tac-toe game. It contains

the values "X", "O" and "NA". Print out ttt in the console so you can have a closer look. On row 1

and column 1, there's "O", while on row 3 and column 2 there's "NA".

To solve this exercise, you'll need a for loop inside a for loop, often called a nested loop. Doing this

in R is a breeze! Simply use the following recipe:

for (var1 in seq1) {

 for (var2 in seq2) {

 expr

 }

}

De paste() functie: print(paste("On row", i, "and column", j, "the board contains", ttt[i,j]))

http://en.wikipedia.org/wiki/Tic-tac-toe

Mix it up with control flow
Let's return to the LinkedIn profile views data, stored in a vector linkedin. In the first exercise

on for loops you already did a simple printout of each element in this vector. A little more in-depth

interpretation of this data wouldn't hurt, right? Time to throw in some conditionals! As with

the while loop, you can use the if and else statements inside the for loop.

Next, you break it
In the editor on the right you'll find a possible solution to the previous exercise. The code loops over

the linkedin vector and prints out different messages depending on the values of li.

In this exercise, you will use the break and next statements:

The break statement abandons the active loop: the remaining code in the loop is skipped and the

loop is not iterated over anymore.

The next statement skips the remainder of the code in the loop, but continues the iteration.

Build a for loop from scratch
This exercise will not introduce any new concepts on for loops.

In the editor on the right, we already went ahead and defined a variable rquote. This variable has

been split up into a vector that contains separate letters and has been stored in a vector charswith

the strsplit() function.

Can you write code that counts the number of r's that come before the first u in rquote?

3. Functions

Function documentation
Before even thinking of using an R function, you should clarify which arguments it expects. All the

relevant details such as a description, usage, and arguments can be found in the documentation. To

consult the documentation on the sample() function, for example, you can use one of following R

commands:

help(sample)

?sample

If you execute these commands in the console of the DataCamp interface, you'll be redirected to

www.rdocumentation.org.

A quick hack to see the arguments of the sample() function is the args() function. Try it out in the

console:

args(sample)

In the next exercises, you'll be learning how to use the mean() function with increasing complexity.

The first thing you'll have to do is get acquainted with the mean() function.

Use a function
The documentation on the mean() function gives us quite some information:

 The mean() function computes the arithmetic mean.

 The most general method takes multiple arguments: x and

 The x argument should be a vector containing numeric, logical or time-related information.

http://www.rdocumentation.org/packages/base/functions/strsplit
http://www.rdocumentation.org/packages/base/functions/sample
http://www.rdocumentation.org/packages/base/functions/sample
http://www.rdocumentation.org/packages/base/functions/args
http://www.rdocumentation.org/packages/base/functions/mean
http://www.rdocumentation.org/packages/base/functions/mean
http://www.rdocumentation.org/packages/base/functions/mean
http://www.rdocumentation.org/packages/base/functions/mean

Remember that R can match arguments both by position and by name. Can you still remember the

difference? You'll find out in this exercise!

Once more, you'll be working with the view counts of your social network profiles for the past 7 days.

These are stored in the linkedin and facebook vectors and have already been defined in the

editor on the right.

The Usage section of the documentation includes two versions of the mean() function. The first

usage,

mean(x, ...)

is the most general usage of the mean function. The 'Default S3 method', however, is:

mean(x, trim = 0, na.rm = FALSE, ...)

The ... is called the ellipsis. It is a way for R to pass arguments along without the function having to

name them explicitly. The ellipsis will be treated in more detail in future courses.

For the remainder of this exercise, just work with the second usage of the mean function. Notice that

both trim and na.rm have default values. This makes them optional arguments.

In the video, Filip guided you through the example of specifying arguments of the sd() function.

The sd() function has an optional argument, na.rm that specified whether or not to remove

missing values from the input vector before calculating the standard deviation.

If you've had a good look at the documentation, you'll know by now that the mean() function also

has this argument, na.rm, and it does the exact same thing. By default, it is set to FALSE, as the

Usage of the default S3 method shows:

mean(x, trim = 0, na.rm = FALSE, ...)

Let's see what happens if your vectors linkedin and facebook contain missing values (NA).

Functions inside functions
You already know that R functions return objects that you can then use somewhere else. This makes

it easy to use functions inside functions, as you've seen before:

speed <- 31

print(paste("Your speed is", speed))

Notice that both the print() and paste() functions use the ellipsis - ... - as an argument. Can

you figure out how they're used?

 make sure to specify na.rm to treat missing values correctly! => na.rm = TRUE

Required, or optional?
By now, you will probably have a good understanding of the difference between required and

optional arguments. Let's refresh this difference by having one last look at the mean() function:

mean(x, trim = 0, na.rm = FALSE, ...)

x is required; if you do not specify it, R will throw an error. trim and na.rm are optional arguments:

they have a default value which is used if the arguments are not explicitly specified.

The following statements about the read.table() function are true:

1. header, sep and quote are all optional arguments.

2. read.table("myfile.txt", "-", TRUE) will throw an error.

http://www.rdocumentation.org/packages/base/functions/mean
http://www.rdocumentation.org/packages/stats/functions/sd
http://www.rdocumentation.org/packages/stats/functions/sd
http://www.rdocumentation.org/packages/base/functions/mean
http://www.rdocumentation.org/packages/base/functions/print
http://www.rdocumentation.org/packages/base/functions/paste
http://www.rdocumentation.org/packages/base/functions/mean
http://www.rdocumentation.org/packages/utils/functions/read.table

Write your own function
Wow, things are getting serious... you're about to write your own function! Before you have a go at

it, have a look at the following function template:

my_fun <- function(arg1, arg2) {

 body

}

Notice that this recipe uses the assignment operator (<-) just as if you were assigning a vector to a

variable for example. This is not a coincidence. Creating a function in R basically is the assignment of

a function object to a variable! In the recipe above, you're creating a new R variable my_fun, that

becomes available in the workspace as soon as you execute the definition. From then on, you can use

the my_fun as a function.

There are situations in which your function does not require an input. Let's say you want to write a

function that gives us the random outcome of throwing a fair die:

throw_die <- function() {

 number <- sample(1:6, size = 1)

 number

}

throw_die()

Up to you to code a function that doesn't take any arguments!

Do you still remember the difference between an argument with and without default values? Have

another look at the sd() function by typing ?sd in the console. The usage section shows the

following information:

sd(x, na.rm = FALSE)

This tells us that x has to be defined for the sd() function to be called correctly,

however, na.rm already has a default value. Not specifying this argument won't cause an error.

You can define default argument values in your own R functions as well. You can use the following

recipe to do so:

my_fun <- function(arg1, arg2 = val2) {

 body

}

Function scoping
An issue that Filip did not discuss in the video is function scoping. It implies that variables that are

defined inside a function are not accessible outside that function. Try running the following code and

see if you understand the results:

pow_two <- function(x) {

 y <- x ^ 2

 return(y)

}

pow_two(4)

y

x

y was defined inside the pow_two() function and therefore it is not accessible outside of that

function. This is also true for the function's arguments of course - x in this case.

http://www.rdocumentation.org/packages/stats/functions/sd
http://www.rdocumentation.org/packages/stats/functions/sd

R passes arguments by value
The title gives it away already: R passes arguments by value. What does this mean? Simply put, it

means that an R function cannot change the variable that you input to that function. Let's look at a

simple example (try it in the console):

triple <- function(x) {

 x <- 3*x

 x

}

a <- 5

triple(a)

a

Inside the triple() function, the argument x gets overwritten with its value times three.

Afterwards this new x is returned. If you call this function with a variable a set equal to 5, you obtain

15. But did the value of a change? If R were to pass a to triple() by reference, the override of

the x inside the function would ripple through to the variable a, outside the function. However, R

passes by value, so the R objects you pass to a function can never change unless you do an explicit

assignment. a remains equal to 5, even after calling triple(a).

The following statements are true about this piece of code?

increment <- function(x, inc = 1) {

 x <- x + inc

 x

}

count <- 5

a <- increment(count, 2)

b <- increment(count)

count <- increment(count, 2)

 a and b equal 7 and 6 respectively after executing this code block.

 After the first call of increment(), where a is defined, a equals 7 and count equals 5.

 In the last expression, the value of count was actually changed because of the

explicit assignment.

R you functional?
Now that you've acquired some skills in defining functions with different types of arguments and

return values, you should try to create more advanced functions. As you've noticed in the previous

exercises, it's perfectly possible to add control-flow constructs, loops and even other functions to

your function body.

Remember our social media example? The vectors linkedin and facebook are already defined in

the workspace so you can get your hands dirty straight away. As a first step, you will be writing a

function that can interpret a single value of this vector. In the next exercise, you will write another

function that can handle an entire vector at once.

A possible implementation of the interpret() function is already available in the editor. In this

exercise you'll be writing another function that will use the interpret() function to

interpret allthe data from your daily profile views inside a vector. Furthermore, your function will

return the sum of views on popular days, if asked for. A for loop is ideal for iterating over all the

vector elements. The ability to return the sum of views on popular days is something you can code

through a function argument with a default value.

Load an R Package
There are basically two extremely important functions when it comes down to R packages:

 install.packages(), which as you can expect, installs a given package.

 library() which loads packages, i.e. attaches them to the search list on your R workspace.

To install packages, you need administrator privileges. This means that install.packages() will

thus not work in the DataCamp interface. However, almost all CRAN packages are installed on our

servers. You can load them with library().

In this exercise, you'll be learning how to load the ggplot2 package, a powerful package for data

visualization. You'll use it to create a plot of two variables of the mtcars data frame. The data has

already been prepared for you in the workspace.

Before starting, execute the following commands in the console:

 search(), to look at the currently attached packages and

 qplot(mtcars$wt, mtcars$hp), to build a plot of two variables of the mtcars data

frame.

An error should occur, because you haven't loaded the ggplot2 package yet!

http://www.rdocumentation.org/packages/utils/functions/install.packages
http://www.rdocumentation.org/packages/base/functions/library
http://www.rdocumentation.org/packages/utils/functions/install.packages
http://www.rdocumentation.org/packages/base/functions/library

4. lapply = list apply

Use lapply with a built-in R function
Before you go about solving the exercises below, have a look at the documentation of

the lapply() function. The Usage section shows the following expression:

lapply(X, FUN, ...)

To put it generally, lapply takes a vector or list X, and applies the function FUN to each of its

members. If FUN requires additional arguments, you pass them after you've

specified X and FUN (...). The output of lapply() is a list, the same length as X, where each

element is the result of applying FUN on the corresponding element of X.

Now that you are truly brushing up on your data science skills, let's revisit some of the most relevant

figures in data science history. We've compiled a vector of famous mathematicians/statisticians and

the year they were born. Up to you to extract some information!

Use lapply with your own function
As Filip explained in the instructional video, you can use lapply() on your own functions as well.

You just need to code a new function and make sure it is available in the workspace. After that, you

can use the function inside lapply() just as you did with base R functions.

In the previous exercise you already used lapply() once to convert the information about your

favorite pioneering statisticians to a list of vectors composed of two character strings. Let's write

some code to select the names and the birth years separately.

The sample code already includes code that defined select_first(), that takes a vector as input

and returns the first element of this vector.

lapply and anonymous functions
Writing your own functions and then using them inside lapply() is quite an accomplishment! But

defining functions to use them only once is kind of overkill, isn't it? That's why you can use so-

called anonymous functions in R.

Previously, you learned that functions in R are objects in their own right. This means that they aren't

automatically bound to a name. When you create a function, you can use the assignment operator to

give the function a name. It's perfectly possible, however, to not give the function a name. This is

called an anonymous function:

Named function

triple <- function(x) { 3 * x }

Anonymous function with same implementation

function(x) { 3 * x }

Use anonymous function inside lapply()

lapply(list(1,2,3), function(x) { 3 * x })

Use lapply with additional arguments
In the video, the triple() function was transformed to the multiply() function to allow for a

more generic approach. lapply() provides a way to handle functions that require more than one

argument, such as the multiply() function:

multiply <- function(x, factor) {

 x * factor

}

http://www.rdocumentation.org/packages/base/functions/lapply
http://www.rdocumentation.org/packages/base/functions/lapply
http://www.rdocumentation.org/packages/base/functions/lapply
http://www.rdocumentation.org/packages/base/functions/lapply
http://www.rdocumentation.org/packages/base/functions/lapply
http://www.rdocumentation.org/packages/base/functions/lapply

lapply(list(1,2,3), multiply, factor = 3)

On the right we've included a generic version of the select functions that you've coded

earlier: select_el(). It takes a vector as its first argument, and an index as its second argument. It

returns the vector's element at the specified index.

Apply functions that return NULL
In all of the previous exercises, it was assumed that the functions that were applied over vectors and

lists actually returned a meaningful result. For example, the tolower() function simply returns the

strings with the characters in lowercase. This won't always be the case. Suppose you want to display

the structure of every element of a list. You could use the str() function for this, which

returns NULL:

lapply(list(1, "a", TRUE), str)

This call actually returns a list, the same size as the input list, containing all NULL values. On the other

hand calling

str(TRUE)

on its own prints only the structure of the logical to the console, not NULL. That's

because str() uses invisible()behind the scenes, which returns an invisible copy of the return

value, NULL in this case. This prevents it from being printed when the result of str() is not assigned.

Did you notice that lapply() always returns a list, no matter the input? This can be kind of annoying.

In the next video tutorial you'll learn about sapply() to solve this.

How to use sapply SAPPLY = Simplified Apply
You can use sapply() similar to how you used lapply(). The first argument of sapply() is the

list or vector X over which you want to apply a function, FUN. Potential additional arguments to this

function are specified afterwards (...):

sapply(X, FUN, ...)

In the next couple of exercises, you'll be working with the variable temp, that contains temperature

measurements for 7 days. temp is a list of length 7, where each element is a vector of length 5,

representing 5 measurements on a given day. This variable has already been defined in the

workspace: type str(temp) to see its structure.

sapply with your own function
Like lapply(), sapply() allows you to use self-defined functions and apply them over a vector or

a list:

sapply(X, FUN, ...)

Here, FUN can be one of R's built-in functions, but it can also be a function you wrote. This self-

written function can be defined before hand, or can be inserted directly as an anonymous function.

sapply with function returning vector
In the previous exercises, you've seen how sapply() simplifies the list that lapply() would return

by turning it into a vector. But what if the function you're applying over a list or a vector returns a

vector of length greater than 1? If you don't remember from the video, don't waste more time in the

valley of ignorance and head over to the instructions!

http://www.rdocumentation.org/packages/base/functions/chartr
http://www.rdocumentation.org/packages/utils/functions/str
http://www.rdocumentation.org/packages/utils/functions/str
http://www.rdocumentation.org/packages/base/functions/invisible
http://www.rdocumentation.org/packages/utils/functions/str
http://www.rdocumentation.org/packages/base/functions/lapply
http://www.rdocumentation.org/packages/base/functions/lapply
http://www.rdocumentation.org/packages/base/functions/lapply
http://www.rdocumentation.org/packages/base/functions/lapply
http://www.rdocumentation.org/packages/base/functions/lapply
http://www.rdocumentation.org/packages/base/functions/lapply
http://www.rdocumentation.org/packages/base/functions/lapply

Use vapply
Before you get your hands dirty with the third and last apply function that you'll learn about in this

intermediate R course, let's take a look at its syntax. The function is called vapply(), and it has the

following syntax:

vapply(X, FUN, FUN.VALUE, ..., USE.NAMES = TRUE)

Over the elements inside X, the function FUN is applied. The FUN.VALUE argument expects a

template for the return argument of this function FUN. USE.NAMES is TRUE by default; in this

case vapply() tries to generate a named array, if possible.

So far you've seen that vapply() mimics the behavior of sapply() if everything goes according to

plan. But what if it doesn't?

In the video, Filip showed you that there are cases where the structure of the output of the function

you want to apply, FUN, does not correspond to the template you specify in FUN.VALUE. In that

case, vapply() will throw an error that informs you about the misalignment between expected and

actual output.

From sapply to vapply
As highlighted before, vapply() can be considered a more robust version of sapply(), because

you explicitly restrict the output of the function you want to apply. Converting

your sapply()expressions in your own R scripts to vapply() expressions is therefore a good

practice (and also a breeze!).

http://www.rdocumentation.org/packages/base/functions/lapply
http://www.rdocumentation.org/packages/base/functions/lapply
http://www.rdocumentation.org/packages/base/functions/lapply
http://www.rdocumentation.org/packages/base/functions/lapply
http://www.rdocumentation.org/packages/base/functions/lapply
http://www.rdocumentation.org/packages/base/functions/lapply
http://www.rdocumentation.org/packages/base/functions/lapply
http://www.rdocumentation.org/packages/base/functions/lapply
http://www.rdocumentation.org/packages/base/functions/lapply

5. useful functions

Mathematical utilities
Have another look at some useful math functions that R features:

 abs(): Calculate the absolute value.

 sum(): Calculate the sum of all the values in a data structure.

 mean(): Calculate the arithmetic mean.

 round(): Round the values to 0 decimal places by default. Try out ?round in the

console for variations of round() and ways to change the number of digits to round

to.

As a data scientist in training, you've estimated a regression model on the sales data for the past six

months. After evaluating your model, you see that the training error of your model is quite regular,

showing both positive and negative values. The error values are already defined in the workspace on

the right (errors).

Find the error
We went ahead and included some code on the right, but there's still an error. Can you trace it and

fix it?

In times of despair, help with functions such as sum() and rev() are a single command away;

simply use ?sum and ?rev in the console.

Data Utilities
R features a bunch of functions to juggle around with data structures::

 seq(): Generate sequences, by specifying the from, to, and by arguments.

 rep(): Replicate elements of vectors and lists.

 sort(): Sort a vector in ascending order. Works on numerics, but also on character

strings and logicals.
 rev(): Reverse the elements in a data structures for which reversal is defined.

 str(): Display the structure of any R object.

 append(): Merge vectors or lists.

 is.*(): Check for the class of an R object.

 as.*(): Convert an R object from one class to another.

 unlist(): Flatten (possibly embedded) lists to produce a vector.

Beat Gauss using R
There is a popular story about young Gauss. As a pupil, he had a lazy teacher who wanted to keep the

classroom busy by having them add up the numbers 1 to 100. Gauss came up with an answer almost

instantaneously, 5050. On the spot, he had developed a formula for calculating the sum of an

arithmetic series. There are more general formulas for calculating the sum of an arithmetic series

with different starting values and increments. Instead of deriving such a formula, why not use R to

calculate the sum of a sequence?

grepl & grep
In their most basic form, regular expressions can be used to see whether a pattern exists inside a

character string or a vector of character strings. For this purpose, you can use:

http://www.rdocumentation.org/packages/base/functions/MathFun
http://www.rdocumentation.org/packages/base/functions/sum
http://www.rdocumentation.org/packages/base/functions/mean
http://www.rdocumentation.org/packages/base/functions/round
http://www.rdocumentation.org/packages/base/functions/round
http://www.rdocumentation.org/packages/base/functions/sum
http://www.rdocumentation.org/packages/base/functions/rev
http://www.rdocumentation.org/packages/base/functions/seq
http://www.rdocumentation.org/packages/base/functions/rep
http://www.rdocumentation.org/packages/base/functions/sort
http://www.rdocumentation.org/packages/base/functions/rev
http://www.rdocumentation.org/packages/utils/functions/str
http://www.rdocumentation.org/packages/base/functions/append
http://www.rdocumentation.org/packages/base/functions/unlist

 grepl(), which returns TRUE when a pattern is found in the corresponding character

string.
 grep(), which returns a vector of indices of the character strings that contains the

pattern.

Both functions need a pattern and an x argument, where pattern is the regular expression you

want to match for, and the x argument is the character vector from which matches should be sought.

In this and the following exercises, you'll be querying and manipulating a character vector of email

addresses! The vector emails has already been defined in the editor on the right so you can begin

with the instructions straight away!

You can use the caret, ^, and the dollar sign, $ to match the content located in the start and end of a

string, respectively. This could take us one step closer to a correct pattern for matching only the

".edu" email addresses from our list of emails. But there's more that can be added to make the

pattern more robust:

 @, because a valid email must contain an at-sign.

 .*, which matches any character (.) zero or more times (*). Both the dot and
the asterisk are metacharacters. You can use them to match any character
between the at-sign and the ".edu" portion of an email address.

 \\.edu$, to match the ".edu" part of the email at the end of the string.

The \\ part escapesthe dot: it tells R that you want to use the . as an actual
character.

sub & gsub
While grep() and grepl() were used to simply check whether a regular expression could be

matched with a character vector, sub() and gsub() take it one step further: you can specify

a replacement argument. If inside the character vector x, the regular expression pattern is found,

the matching element(s) will be replaced with replacement.sub() only replaces the first match,

whereas gsub() replaces all matches.

Suppose that emails vector you've been working with is an excerpt of DataCamp's email database.

Why not offer the owners of the .edu email addresses a new email address on the datacamp.edu

domain? This could be quite a powerful marketing stunt: Online education is taking over traditional

learning institutions! Convert your email and be a part of the new generation!

Regular expressions are a typical concept that you'll learn by doing and by seeing other examples.

Before you rack your brains over the regular expression in this exercise, have a look at the new things

that will be used:

 .*: A usual suspect! It can be read as "any character that is matched zero or
more times".

 \\s: Match a space. The "s" is normally a character, escaping it (\\) makes it a
metacharacter.

 [0-9]+: Match the numbers 0 to 9, at least once (+).

 ([0-9]+): The parentheses are used to make parts of the matching string

available to define the replacement. The \\1 in the replacement argument
of sub() gets set to the string that is captured by the regular expression [0-

9]+.

http://www.rdocumentation.org/packages/base/functions/grep
http://www.rdocumentation.org/packages/base/functions/grep
http://www.rdocumentation.org/packages/base/functions/grep
http://www.rdocumentation.org/packages/base/functions/grep
http://www.rdocumentation.org/packages/base/functions/grep
http://www.rdocumentation.org/packages/base/functions/grep
http://www.rdocumentation.org/packages/base/functions/grep
http://www.rdocumentation.org/packages/base/functions/grep
http://www.rdocumentation.org/packages/base/functions/grep

Right here, right now
In R, dates are represented by Date objects, while times are represented by POSIXct objects. Under

the hood, however, these dates and times are simple numerical values. Date objects store the

number of days since the 1st of January in 1970. POSIXct objects on the other hand, store the

number of seconds since the 1st of January in 1970.

The 1st of January in 1970 is the common origin for representing times and dates in a wide range of

programming languages. There is no particular reason for this; it is a simple convention. Of course,

it's also possible to create dates and times before 1970; the corresponding numerical values are

simply negative in this case.

Create and format dates
To create a Date object from a simple character string in R, you can use the as.Date() function.

The character string has to obey a format that can be defined using a set of symbols (the examples

correspond to 13 January, 1982):

 %Y: 4-digit year (1982)

 %y: 2-digit year (82)

 %m: 2-digit month (01)

 %d: 2-digit day of the month (13)

 %A: weekday (Wednesday)

 %a: abbreviated weekday (Wed)

 %B: month (January)

 %b: abbreviated month (Jan)

The following R commands will all create the same Date object for the 13th day in January of 1982:

as.Date("1982-01-13")

as.Date("Jan-13-82", format = "%b-%d-%y")

as.Date("13 January, 1982", format = "%d %B, %Y")

Notice that the first line here did not need a format argument, because by default R matches your

character string to the formats "%Y-%m-%d" or "%Y/%m/%d".

Create and format times
Similar to working with dates, you can use as.POSIXct() to convert from a character string to

a POSIXct object, and format() to convert from a POSIXct object to a character string. Again, you

have a wide variety of symbols:

 %H: hours as a decimal number (00-23)

 %I: hours as a decimal number (01-12)

 %M: minutes as a decimal number

 %S: seconds as a decimal number

 %T: shorthand notation for the typical format %H:%M:%S

 %p: AM/PM indicator

For a full list of conversion symbols, consult the strptime documentation in the console:

?strptime

Again,as.POSIXct() uses a default format to match character strings. In this case, it's %Y-%m-%d

%H:%M:%S. In this exercise, abstraction is made of different time zones.

http://www.rdocumentation.org/packages/base/functions/as.Date
http://www.rdocumentation.org/packages/base/functions/as.POSIXlt
http://www.rdocumentation.org/packages/base/functions/format
http://www.rdocumentation.org/packages/base/functions/as.POSIXlt

Calculations with Dates
Both Date and POSIXct R objects are represented by simple numerical values under the hood. This

makes calculation with time and date objects very straightforward: R performs the calculations using

the underlying numerical values, and then converts the result back to human-readable time

information again.

You can increment and decrement Date objects, or do actual calculations with them (try it out in the

console!):

today <- Sys.Date()

today + 1

today - 1

as.Date("2015-03-12") - as.Date("2015-02-27")

Calculations with Times
Calculations using POSIXct objects are completely analogous to those using Date objects. Try to

experiment with this code to increase or decrease POSIXct objects:

now <- Sys.time()

now + 3600 # add an hour

now - 3600 * 24 # subtract a day

Adding or substracting time objects is also straightforward:

birth <- as.POSIXct("1879-03-14 14:37:23")

death <- as.POSIXct("1955-04-18 03:47:12")

einstein <- death - birth

einstein

Time is of the essence
The dates when a season begins and ends can vary depending on who you ask. People in Australia

will tell you that spring starts on September 1st. The Irish people in the Northern hemisphere will

swear that spring starts on February 1st, with the celebration of St. Brigid's Day. Then there's also the

difference between astronomical and meteorological seasons: while astronomers are used to

equinoxes and solstices, meteorologists divide the year into 4 fixed seasons that are each three

months long. (source: www.timeanddate.com)

