Summary Operations Management

Introduction

What is OM?

Operations Management deals with the **design** and **management** of products, processes, services and supply chains. It considers the acquisition, development, and utilization of resources that firms need to deliver the goods and services their clients want.

Goods (physical items) vs **services** (activities) \rightarrow occur jointly

Decision horizon: strategic issues \rightarrow tactical issues \rightarrow operational issues

Productivity

= output/input

- = efficiency + effectiveness
 - → Impact of the environment, intangible factors and time lags

Strategy and competition

The customer order decoupling point (CODP)

= inventory point in the value chain for a product, where the product is linked to a specific customer order (order penetration point).

- Downstream: customer order driven
- Upstream: forecast-drives

Possible CODP positions: DTS \rightarrow MTS \rightarrow ATO \rightarrow MTO \rightarrow ETO

- Why downstream:
 - To buffer shortcomings
 - Market requirements
- Why upstream:
 - \circ $\,$ $\,$ To match productions-distribution lead time and customer order lead time $\,$
 - To deal with demand uncertainty
 - To reduce inventory costs

Managing and analyzing business processes

Performance management

- Performance scoreboard: supply chain dashboard
- KPI's = Key Performance Indicators
- SCOR (= Supply Chain Operations Reference) Measures
 - o Reliability
 - o Responsiveness
 - o Flexibility
 - o Costs
 - o Asset management

Process mapping

Techniques:

- Value Stream Mapping (VSM)
- Flow Process Chart and Flow diagram
- Gantt chart
- Cumulative in- and outflow

Little's Law

 $I = R \times T$

Forecasting

Subjective forecasting methods

The Delphi method

Individual opinions are compiled and reconsidered. Repeat until an overall group consensus is reached.

Objective forecasting methods

Causal models

$$Y = f(X_1, X_2, \dots, X_n)$$

Time series methods

 $F_{t,t+\tau} = forecast made in period t for the demand in period t + \tau$

Time series forecast:

$$F_t = \sum_{n=1}^{\infty} a_n D_{t-n}$$

Evaluation of forecasts

 $e_t = forecast \ error \ in \ period \ t$

Measures of forecast accuracy (see formulas on slides)

- Mean absolute deviation (MAD)
- Mean squared error (MSE)
- Mean absolute percentage error (MAPE)

Forecasting for stationary series

Stationary time series: $D_t = \mu + \varepsilon_t$

Moving Averages

 $MA(N) \rightarrow$ uses the **mean** of the **N** most recent observations

One-step-ahead forecast: $F_t = (\frac{1}{N})(D_{t-1} + D_{t-2} + \dots + D_{t-N})$

Weighted Moving Averages

Attaches importance to certain data over other data \rightarrow Weighting factors

Exponential Smoothing

New Forecast = α (most recent observation) + (1 – α) (last forecast)

→ Where $0 < \alpha \le 1$ is the smoothing constant

In symbols:

$$F_{t+1} = \alpha D_t + (1 - \alpha) F_t$$

Infinite expansion for F_{t+1} :

$$F_{t+1} = \sum_{i=0}^{\infty} \alpha (1-\alpha)^i D_{t-i}$$

Effect of α value:

- Small values of $\alpha \rightarrow$ forecasted value will be stable (low variability)
- Large values of $\alpha \rightarrow$ forecast will more closely track the actual time series (quick reaction to changes)
- → Small α is recommended

Trend-based methods

Regression for times series forecasting

<u>Model</u>: $\widehat{D}_t = a + bt$

➔ See formularium for a and b

Double exponential smoothing – Hold

Holt's method

To forecast when there is a linear trend present.

τ-step-ahead forecast: $F_{t,t+\tau} = S_t + \tau \times G_t$

➔ See formularium for S and G

Methods for seasonal series

Forecasting for seasonal series

<u>Multiplicative seasonal factors:</u> c_t (for $1 \le t \le N$)

 $\sum c_t = N$ with N = number of observations

Quick and dirty method

- 1) Compute the **sample mean** of the entire data set
- 2) Divide each observation by the sample mean
- 3) Average the factors for like seasons

Deseasonalizing a series

4) Divide each observation in the series by the appropriate seasonal factor

Method of centered moving averages

See slides (+ ex 9)

Smoothing the seasonalized technique

Winter's method

3 smoothing equations: the series, the trend and the seasonal factors

➔ See formularium

 $F_{t,t+\tau} = (S_t + \tau \times G_t) c_{t+\tau-N}$

Initialization procedure

1) Compute sample means for two separate cycles of data (V_1 and V_2)

$$V_1 = \frac{1}{N} \sum_{j=-2N+1}^{-N} D_j$$

$$V_2 = \frac{1}{N} \sum_{j=-N+1}^{0} D_j$$

- 2) Define $G_0 = (V_2 V_1)/N$ as the initial slope estimate
- 3) Set $S_0 = V_2 + G_0[(N-1)/2]$
- 4) Determine seasonal factors
 - a) The initial seasonal factors are computed for each period

$$c_{t} = \frac{D_{t}}{V_{i} - \left[\frac{(N+1)}{2} - j\right]G_{0}} \qquad for - 2N + 1 \le t \le 0$$

where *i* is the cycle and *j* is the period of the cycle

b) Average the seasonal factors (assuming exactly two cycles of initial data)

$$c_{-N+1} = \frac{c_{-2N+1} + c_{-N+1}}{2}, \dots, c_0 = \frac{c_{-N} + c_0}{2}$$

c) Normalize the seasonal factors

$$c_j = \left[\frac{c_j}{\sum_{i=-N+1}^{0} c_i}\right] \times N \quad for - N + 1 \le j \le 0$$

Inventory control - Subject to Deterministic Demand

Inventory control

Motivation for holding inventories

- Economies of Scale \rightarrow Cycle inventory
- Uncertainty → Safety inventory
- Speculation
- Smoothing to account for changes in the demand pattern
- Control costs
- Transportation \rightarrow In-Transit or Pipeline inventory
 - ⇒ Transportation takes time
- Logistics

Characteristics of inventory systems

- Demand
- Lead time (or flow time) τ
- Review time
- Treatment of excess demand
- Inventory that changes over time

Relevant costs

- Item cost: c
- Holding cost (inventory cost): h = Ic
- Order cost (production cost): fixed ordering + variable purchasing cost

$$\Rightarrow c(x) = \begin{cases} 0 & \text{if } x = 0 \\ K + cx & \text{if } x > 0 \end{cases}$$

- \Rightarrow K = setup costs (in case of a production order)
- Penalty cost (shortage cost): p

Basic EOQ model

Economic Order Quantity model

Minimizing total costs

EOQ = Q to minimize the average annual cost $G(Q) \rightarrow$ see formularium

- Reorder interval: $T = \frac{Q}{A}$

- EOQ:
$$Q^* = \sqrt{\frac{2K\lambda}{h}}$$

- \Rightarrow Optimal number of orders per year = $\frac{\lambda}{\alpha}$
- \Rightarrow Optimal reorder interval = T

Inclusion of order lead time ≤ T

- Constant order lead time $\tau \leq T$
- R = level of on-hand inventory at the instant an order should be placed: $R = \lambda \tau$

Robustness of the solution - Sensitivity Analysis

See formularium

EOQ with finite production rate

Items are produced internally at a rate P (> λ , the consumption rate)

Optimal production quantity (~ EOQ):

$$\Rightarrow Q^* = \sqrt{\frac{2K\lambda}{h'}} \quad \text{with } h' = h(1 - \frac{\lambda}{P})$$

Average cost of holding and setup:

$$\Rightarrow \quad G(Q) = \frac{K}{T} + \frac{hH}{2} = \frac{K\lambda}{Q} + \frac{hQ}{2} \left(1 - \frac{\lambda}{P}\right) = \frac{K\lambda}{Q} + \frac{hQ}{2}$$

• H = maximum level of on-hand inventory = $Q\left(1-\frac{\lambda}{P}\right)$

- Q = lot size = size of each production run
- $\circ \quad T_1 = \frac{Q}{P} = uptime \& T_2 = T T_1 = downtime$

Profit:

- Earnings = $\lambda(sp c)$ with sp = selling price
- Costs = G(Q)
- Profit = earning costs = $\lambda(sp c) G(Q)$

Quantity discounts (see example slides)

Quantity discounts for larger orders: $Q \ge breakpoint$

All-units discounts

Optimal solution = lot size with lowest average annual cost.

$$\Rightarrow G_j(Q) = \lambda c_j + \lambda \frac{K}{Q} + I c_j \frac{Q}{2}$$

Incremental discounts

→
$$G(Q) = \lambda \frac{C(Q)}{Q} + \lambda \frac{K}{Q} + I \frac{C(Q)}{Q} \frac{Q}{2}$$

Resource-constrained multiple product systems

Inventory of n items in which the total amount available to spend is C. Items cost respectively c_1, c_2, \dots, c_n

$$\begin{array}{ll} \text{Minimize } \sum_{i=1}^{n} \left[\frac{h_{i}Q_{i}}{2} + \frac{K_{i}\lambda_{i}}{Q_{i}} \right] & \text{subject to: } \sum_{i=1}^{n} c_{i}Q_{i} \leq C \\ \\ \text{IF } & \sum_{i=1}^{n} c_{i}EOQ_{i} \leq C \end{array}$$

THEN optimal solution is $Q_i^* = EOQ_i$

$$IF \qquad \sum_{i=1}^n c_i EOQ_i > C$$

THEN at the optimal solution: $\sum_{i=1}^{n} c_i Q_i = C$ THEN minimize $G(Q_1, Q_2, ..., Q_n, \theta) = \sum_{i=1}^{n} \left[\frac{h_i Q_i}{2} + \frac{K_i \lambda_i}{Q_i} \right] + \theta \left(\sum_{i=1}^{n} c_i Q_i - C \right)$ $\Rightarrow \theta = Lagrange multiplier$

$$IF \qquad \sum_{i=1}^{n} c_i EOQ_i > C$$

$$AND \quad \frac{c_1}{h_1} = \frac{c_2}{h_2} = \dots = \frac{c_n}{h_n}$$

$$THEN \quad Q_i^* = mEOQ_i \qquad with \ m = \frac{C}{\sum_{i=1}^{n} c_i EOQ_i}$$

EOQ models for production planning

n items with known demand rates λ_j , production rates P_j , holding costs h_j , and setup costs K_j . Choose the cycle time T = max(T^* , T_{min}) as the optimal cycle.

See slides + HB!

Inventory Control – Subject to Uncertain Demand

The nature of randomness

Normal distribution: $N(\mu, \sigma^2)$

The value of deterministic models

- 1) A basis for understanding fundamental trade-offs
 - Between holding costs and order costs
 - o Minimizing total costs
- 2) They may be good approximations, depending on the degree of demand uncertainty
 - Demand: $D = D_{deterministic} + D_{random}$

Stochastic models: What is safety stock?

Safety stock ss: satisfying demand the exceeds the amount forecasted in a given period.

➔ See formula on formularium

SS for single period inventory models

Uncertainty period = complete period

SS for multiple period inventory models

Continuous review: (Q,R) policy

- Fixed order size Q, timing fluctuates
- Order at reorder point R
- Uncertainty period = lead time τ

Periodic review: (s,S) policy

- Fixed interval T, order quantity Q fluctuates
- Order up to inventory level S
- Uncertainty period = lead time τ + review period T

Lead time variability \rightarrow see formularium

Single period inventory: Newsboy model

Trade-off between overage cost (~ holding cost) and underage cost (~penalty cost)

Solving a newsboy problem

- 1) Develop an expression for the cost
 - \circ $c_0 = unit \ cost \ of \ overage$
 - $\circ \quad c_u = unit \ cost \ of \ underage$
 - G(Q,D)
- 2) Determine the expected cost

•
$$G(Q) = see formularium = c_0 \int_0^Q (Q - x) f(x) dx + c_u \int_Q^\infty (x - Q) f(x) dx$$

3) Determine the optimal policy

$$\circ \quad F(Q^*) = \frac{c_u}{c_0 + c_u} = critical \ ratio$$

$$\circ \quad Q^* = \sigma z + \mu \quad with \ safety \ stock = \sigma z$$

• Normal probability distribution (see formularium)

Newsboy problem with discrete demand

Locate the critical ratio between two values of F(Q) and choose the Q corresponding to the higher value.

Newsboy problem – Poisson distribution

$$f(x) = \frac{e^{-\mu}\mu^x}{x!} \quad for \ x = 0, 1, 2, \dots$$

- Mean = μ
- Variance = μ
- → See formularium: Poisson Distribution Function Table

Newsboy problem with starting inventory

Starting inventory u > 0:

- If $u < Q^* \rightarrow order (Q^* u)$
- If $u \ge Q^* \rightarrow do not order$
- ➔ Q* = order-up-to point

Newsboy problem – Multiple planning periods

If all excess demand is back-ordered:

- $c_0 = \text{holding cost}$
- c_u = penalty cost (lost profit and/or loss-of-goodwill cost)

Performance measures

Expected lost sales See formularium

Expected sales Expected sales + Expected lost sales = Expected demand (µ)

Expected leftover inventory Expected sales + Expected leftover inventory = Q (order quantity)

Expected profit

= $[(Price - cost) \times Expected sales] - [(Cost - Salvage value) \times Expected leftover inventory]$

In-stock probability (Type I service level α)

- In-stock probability = F(Q) = F(z)
- Stock-out probability = 1 F(Q) = 1 F(z)

Fill rate (Type II service level β)

Fill rate = $\frac{\text{Expected sales}}{\text{Expected demand}}$

Other objectives for choosing an order quantity

- Determine Q that satisfies a target in-stock probability
- Determine Q that satisfies a target fill rate

$$\circ \quad L(z) = \left(\frac{\mu}{\sigma}\right) \times (1 - Fill \ rate)$$

Multiple period inventory models

- Include a setup cost for placing an order
- Allow for a positive lead time

Higher customer service while lower safety inventory

- Reduce demand uncertainty σ_D
- Reduce supplier lead time L
- Reduce lead time uncertainty σ_L
- Safety stock aggregation

ABC analysis

PARETO EFFECT = the distribution of the value of inventory items in a multi-item system follows an increasing exponential curve.

Remember: What gets measured gets improved

- Annual inventory turnover

- Inventory holding period
- Inventory to assets ratio
- Customer service

Supply Chain Management

The role of information in the supply chain

Bullwhip effect

Order variation increases dramatically as one moved from retailers to distributors to the factory.

 $Bullwhip = \frac{Variance \ of \ orders}{Variance \ of \ demand} = \frac{\sigma_{orders}^2}{\sigma_{demand}^2}$

➔ Variance amplification if the measure > 1

Information Transfer: VMI

Vendor Managed Inventory (VMI) → Just-in-time distribution (JITD)

Enabling technologies

- Electronic commerce
 - EDI: Electronic Data Interchange
 - Web-based transaction systems
- Radio Frequency Identification (RFID) → example Wal-Mart

Risk pooling

Impact on cycle stock

Centralization: order costs are shared over different regions.

Impact on safety stock

Centralization and safety stock aggregation: risk pooling to reduce uncertainty.

Risk pooling

- 1) Location pooling
 - o Drawback: inventory further away from demand
- 2) Consolidated distribution
- 3) Product pooling
 - Using one universal design (no product differentiation)
 - Drawback: product offerings are limited
- 4) Delayed differentiation
- 5) Virtual pooling
 - $\circ \quad \text{Share inventory data} \quad$

Designing for supply chain efficiency

- 1) Design for Logistics (DFL)
- 2) Postponement in supply chains

- Postponing the final configuration of the product until the last possible point.
- 3) Configuration of the supplier base
 - Streamlining the supply chain: reducing the number and variety of suppliers.
- 4) Outsourcing arrangements
- 5) Channels of distribution \rightarrow Intermediate storage locations

Management of waiting lines

Waiting lines

Queuing theory = mathematical approach to the analysis of waiting lines.

Why is there waiting?

- Variability
- Mismatch between supply and demand

Waiting line management

Goal: Minimize Total cost = Customer waiting cost + Capacity cost

Characteristics of waiting lines

Population source

- Infinite-source situation
- Finite-source situation

Number of servers (channels)

- Single- vs multiple-channel
- Single- vs multiple phase

Arrival and service patterns

- Customer service times \rightarrow (negative) exponential distribution
- Customer arrivals per unit of time → Poisson distribution

We assume customers are patient.

Other possibilities:

- Reneging: leave the line
- Jockeying: switch to another line
- Balking: not enter the line

Queue discipline (order of service)

- First-come, first-served (fcfs)
- Other priority rules

Queuing models: infinite source

Notation and basic relationships

- $\lambda = customer \ arrival \ rate$
- $\mu = service rate per server$

→ Average number of customers being served: $r = \frac{\lambda}{\mu}$

 L_q = average number of customers waiting for service

 L_s = average number of customers in the system (waiting and/or being served)

→ Average number of customers: $L_s = L_q + r$

 W_q = average time customers wait in line

 W_s = average time customers spend in the system (waiting in line and service time)

→ Little's law: $L_s = \lambda W_s$ and $L_q = \lambda W_q$

 $\rho = the \ system \ utilization \rightarrow see \ formularium$

 $\frac{1}{\mu} = service time$

 $\Rightarrow W_s = W_q + r$

M = number of servers

 $P_0 = probability of zero units in the system$

 $P_n = probability of n units in the system$

 $L_{max} = maximum expected number of customers waiting in line$

Assumptions

- System operating under steady-state conditions: average arrival and service rates are stable.
- No limit on the length of the queue.

Kendall's notation: A/B/C

- A: Distribution of inter-arrival times of customers (time between arrivals to the queue)
- B: Distribution of service times
- C: Number of servers
- → M: Exponential Distribution (Markovian)
- ➔ D: Deterministic Distribution

M/M/1 infinite-source fcfs queuing model

See formularium

M/D/1 infinite-source fcfs queuing model

Effect of **constant** service time:

- Cut in half the average number of customer waiting in line (L_q)
- Cut in half the average customers spend waiting in line (W_q)
 - \Rightarrow Automatically done because L_q is already cut in half!
- → Elimination or reduction of the variability: shortening of waiting lines

M/M/S infinite-source fcfs queuing model

<u>Assumptions</u>

- Servers all work at the same average rate \rightarrow number of servers = S
- Customers form a single waiting line

Notations

 $W_a = average$ waiting time for an arrival not immediately served

 $P_w = probability$ that an arrival will have to wait for service

Table for values of L_q and P_0

➔ See formularium

Maximum line length

Determine the approximate line length n that will satisfy a specified percentage.

➔ See formularium for n

M/M/S multiple-priority model

Assumptions

- Arriving customers are assigned to priority classes
- Highest class first, within each class: first-come, first-served
- Revising priorities is possible

Notations

 W_k = average waiting time in line for units in kth priority class

W = average time in the system for units in the kth priority class

 L_k = average number waiting in line for units in kth priority class

➔ See formularium

Queuing models: finite source

Assumptions

- Arrival rates → Poisson
- Service times → Exponential

See formularium

- ✤ Downtime = Waiting time + Service time
- ✤ Probability of not waiting = 1 Probability of waiting

Cost analysis

Designing systems that achieve a balance between (service) capacity and customer waiting time.

Other solutions:

- Reduce variability
- Reduce the cost of waiting

- Reduce perceived waiting time (as opposed to actual waiting time)
- Derive benefit from customer waiting

Simulation

Basic steps for all simulation models

- 1) Identify the problem and set objectives.
- 2) Develop the simulation model.
- 3) Test the model to be sure that it reflects the system being studied = VALIDATION
- 4) Develop one or more experiments.
- 5) Run the simulation and evaluate results.
- 6) Repeat step 4 and 5 until satisfied.

Monte Carlo simulation

Random sampling from probability distributions.

- 1) Identify a probability distribution for each random component of the system.
- 2) Work out an assignment so that intervals of random numbers will correspond to the probability distribution.
- 3) Obtain the random numbers needed for the study: computer generated or tables.
- 4) Interpret the results.

Simulating theoretical distributions

- Poisson:
 - ⇒ Obtain discrete cumulative distribution from a table
- Normal:
 - \Rightarrow Simulated value = μ + (Random number $\times \sigma$)
- Uniform distribution:
 - \Rightarrow Simulated value = a + (b a)(Random number as a percentage)
- Negative Exponential Distribution :
 - $\Rightarrow P(t \ge T) = e^{-\lambda t} \text{ and } P(t \ge T) = Random number$ $\Rightarrow t = -\frac{\ln(Random number)}{2}$

$$t = -\frac{m(nunuoni nu}{\lambda}$$

Discrete-event simulation

Discrete-event simulation (DES) models the operation of a system as a discrete sequence of events in time.

- Each event \rightarrow change of state
- Between consecutive events \rightarrow no change assumed
- ➔ Simulation jumps in time

Limitations

- No optimum solution
- Approximate behavior
- Large-scale simulation requires considerable effort

Decision-making process

See slide 29

Manufacturing Planning and Control – Aggregate Planning / S&OP

Manufacturing Planning and Control (MPC)

MPC system provides the information upon which managers make effective decisions.

- Long-range plans → strategic level
 - Long term capacity
 - Location/layout
- Intermediate plans \rightarrow tactical level
 - o Employment
 - o Output
- Short-range plans \rightarrow operational level
 - Machine scheduling

Enterprise Resource Planning (ERP)

Planning and controlling the business.

Performance measures

- Delivery performance
- Fill rate by line item
- Perfect order fulfilment
- Order fulfilment lead time
- Warranty cost of % of revenue
- Inventory days of supply
- Cash-to-cash cycle time
- Asset turns

Aggregate planning / Sales and Operations Planning (S&OP)

Goal

Determine aggregate production quantities and the levels of resources required to achieve these production goals.

Problem

Determine both work force levels (W_t) and production levels (P_t) to minimize total costs over the T period planning horizon.

<u>Assumption</u>

Demand is known with certainty.

Aggregate Units

- Actual units of production
- Weight
- Volume
- Dollars
- Fictitious aggregated units

Costs in aggregate planning

- Smoothing costs
- Holding costs
- Shortage cost
- Regular time costs
- Overtime and subcontracting costs
- Idle time costs

Strategies

Balance the advantages of producing to meet demand closely against the disruptions caused by changing the levels of production and/or the workforce levels.

Chase strategy (Zero Inventory Plan)

Vary production rates to meet changes in demand.

Level strategy (Constant Workforce Plan)

Fix production rates and using inventory and/or time to meet changes in demand.

Hybrid strategy (Mixed strategies)

Use a combination of chase and level.

 \Rightarrow Make use of LP to optimize the trade-off between inventory and capacity costs.

Linear programming

Constraints!

- 1) Conversation of workforce constraints $\rightarrow W_t = W_{t-1} + H_t F_t$
- 2) Conservation of units constraints $\rightarrow I_t = I_{t-1} + P_t + S_t D_t$
- 3) Constraints relating production levels to workforce levels $\rightarrow P_t = Kn_tW_t + O_t U_t$
- 4) Non-negativity constraints for all variables

Objective function

$$Minimize \sum_{t=1}^{T} (c_H H_t + c_F F_t + c_I I_t + c_R P_t + c_O O_t + c_U U_t + c_S S_t)$$

Rounding the variables

Conservative rounding approach: number of workers to the next larger integer.

Master Production Scheduling (MPS) and Materials Requirements Planning (MRP)

Master Production Scheduling (MPS)

MPS translates S&OP into a plan for producing specific products in the future: quantities and timing. Tracks following information:

- Booked orders vs forecasted demand
- Available-to-Promise (ATP)

Time-phased record

Projected available balance

= Beginning balance + Master production schedule - Forecast

Rolling through time

- Actual sales may be different
- Forecasts may change
- ➔ Production changes: expensive

Order promising

<u>For every period in the planning horizon:</u> *Projected available inventory* = *Previous available inventory* + *MPS* - *MAX*(*Forecast*, *Actual orders*)

→ For fixed periods: - *actual orders*

For the first period:

ATP = On - hand + MPS - Sum of the orders until the next MPS

For each period when a subsequent: ATP = MPS - Sum of the orders until the next MPS

MPS planning horizon and stability (time fences)

Time fences:

- Frozen zone (closest to current date)
- ➔ DEMAND TIME FENCE
- Slushy zone
- ➔ PLANNING TIME FENCE
- Liquid zone

MPS and the customer order decoupling point (CODP)

Items for which MPS is done depends on the CODP:

- Make to stock (MTS) → MPS on final products
- Assemble to order (ATO) \rightarrow MPS on 'intermediate' modules
- Make to order (MTO) → MPS on components / raw materials

Super bill of materials \rightarrow describes the options or modules that make up the average end item.

Material Requirements Planning (MRP) basics

MRP = process of translating a production schedule for an end product (MPS) to a set of requirements for all of the subassemblies and parts needed to make that item.

PUSH system: one produced, subassemblies are pushed to next level whether needed or not.

Explosion calculus

A set of rules for converting MPS to a requirements schedule.

Two basic operations:

- 1) Time phasing \rightarrow shifting backwards by the lead time
- 2) Multiplication \rightarrow multiplicative factor if more than one subassembly

The lot sizing problem

What production quantities will minimize total holding and setup costs over the planning horizon?

- Set of requirements: $(r_1, r_2, ..., r_n)$
- Set up cost: K
- Holding cost: h
- Production quantities: $(y_1, y_2, ..., y_n)$

Feasibility condition: no stock-outs in any period

$$\sum_{i=1}^{j} y_i > \sum_{i=1}^{j} r_i \quad for \ 1 \le j \le n$$

Alternative lot-sizing schemes

EOQ lot sizing

$$EOQ = \sqrt{\frac{2K\lambda}{h}}$$

Ending inventory = Beginning inventory + Planned deliveries - Net requirements

Silver-Meal heuristic

C(T) = average holding and setup cost per period

Forward method: determining C(T) and stopping when this function first increases.

$$C(j) = \frac{K + hr_1 + 2hr_2 + \dots + (j-1)hr_j}{j}$$

→ Once $C(j) > C(j-1) \rightarrow STOP$

- Set $y_1 = r_1 + r_2 + \dots + r_{j-1}$
- Begin process again starting at period j.

Least unit cost

Similar to Silver-Meal, but:

$$C(j) = \frac{K + hr_1 + 2hr_2 + \dots + (j-1)hr_j}{(r_1 + r_2 + \dots + r_{j-1})}$$

Part period balancing

Set the order horizon equal to the number of periods that *most closely matches* the total holding cost with the setup cost over that period.

Lot sizing with capacity constraints

Detecting an infeasible problem

An infeasible problem: r = (52, 87, 23, 56) and c = (60, 60, 60, 60)

Obtaining a feasible solution for a feasible problem

A feasible problem: r = (20, 40, 100, 35, 80, 75, 25) and c = (60, 60, 60, 60, 60, 60, 60)

→ Approximate lot-shifting technique: back-shift demand to prior periods

Improving a feasible solution

By shifting, starting from the last period and working backward to the beginning.

Shortcomings of MRP

- Uncertainty
- Capacity planning
- Rolling horizons and system nervousness
- Lead times dependent on lot sizes
- Quality problems
- Data integrity
- Order pegging

Just-in-time and Kanban

Push and Pull

Push systems: schedule release of work based on information from outside the system.

- \Rightarrow Actual or forecasted demand
- ⇒ Due date drive
- ⇒ Do not limit WIP

Pull systems: authorize release of work based on information from inside the system.

- ⇒ System status
- ⇒ Rate driven
- ⇒ Limit on WIP

Kanban

Kanban is a mechanism for implementing pull. All goods must be accompanied by a Kanban (card).

Kanban cards help create a demand-driven system.

Types:

- Conveyance/transportation Kanban
- Production Kanban
- Sales/vendor Kanban

How many Kanban cards needed in 1 loop?

See formularium

- ⇒ Lead time: processing time + waiting time + conveyance time
- ⇒ Setting number of Kanban cards = maximum inventory

Kanban card count for multiple products

Take into account:

- Changeover times
- Minimum batch sizes
- Takt time: amount of time that must elapse between two consecutive unit completions in order to meet the demand.

Setting minimum batch sizes (MBS)

MBS = minimum number of cards \rightarrow low water level (<-> high water)

⇒ Number must be rounded up (for feasibility) to an integer number of Kanbans

Comparison of MRP and JIT

MRP: push system

- Based on forecasts of sales of end items.
- Once produced, subassemblies are *pushed* to next level whether needed or not.

JIT: pull system

- Production at one level only happens when initiated by a request at the higher level.
- Unit are *pulled* through the system by request.

Setup time reduction – SMED

Definition of setup

Setup or changeover = preparation and after-adjustment before and after each lot is processed.

Why setup time reduction?

- Economic lot size
- Changing market conditions
 - ⇒ Changing market demands: need for diversified, low-volume production.
 - ⇒ Frequent setups necessary to produce a variety of goods in small lots.
- Benefits:
 - o Increased flexibility
 - o Increased bottleneck capacity
 - o Reduced costs

What is SMED?

Single-Minute Exchange of Die

⇒ A theory and techniques for performing setup operations in under ten minutes.

History of SMED

Shigeo Shingo

Two different types of setup operations:

- 1) Internal setup (IED: inner exchange of die)
 - ⇒ Can only be performed when the machine is stopped
- 2) External setup (OED: outer exchange of die)
 - ⇒ Can be performed while machine is in operation

Fundamentals of SMED

- 1) Preliminary stage (stage 0): Mixed stage
 - ⇒ Internal and external setup not distinguished
- 2) Stage 1: Separated stage
 - \Rightarrow Separating internal and external setup
- 3) Stage 2: Transferred stage
 - ⇒ Converting internal to external setup
- 4) Stage 3: Improved stage
 - ⇒ Streamlining all aspects of the setup operation

Techniques for applying SMED

Techniques for improvement stage 1

- Using a checklist
- Performing function checks
- Improving transportation of dies and other parts

Techniques for improvement stage 2

- Preparing operating condition in advance
- Function standardization
 - o Shape standardization
 - Function standardization
- Using intermediary jigs

Techniques for improvement stage 3

- Radical improvements in external setup operations
 - o Improvement in the storage and transportation of parts
- Radical improvements in internal setup operations
 - o Implementation of parallel operations
 - Use of functional clamps
 - \circ Elimination of adjustments \rightarrow setting right the first time

Operations scheduling

Factory planning:

- 1) Forecasts of future demand
- 2) Aggregate planning
- 3) Master production schedule (MPS)
- 4) Materials requirements planning (MRP) system
- 5) Detailed job shop schedule

Dynamic vs static scheduling

Job shop scheduling problem

Problem

How to sequence the different jobs to optimize some specified criterion.

Objectives

- Meet due dates
- Minimize work-in-process (WIP) inventory
- Minimize average flow time
- Maximize machine/worker utilization
- Reduce setup times for changeovers
- Minimize direct production and labor costs

<u>Terminology</u>

- Flow shop
- Job shop
- Parallel processing vs sequential processing
- Flow time of job i
- Makespan
- Tardiness (positive)
- Lateness (may be negative)

Common sequencing rules

- First-come, first-served (FCFS)
- Shortest processing time (SPT)
- Earliest due date (EDD)
- Critical ratio (CR)
 - ⇒ Ratio of processing time of the job and remaining time until the due date

$$\Rightarrow CR = \frac{processing time}{due date-current date} \rightarrow schedule job with largest CR value next$$

$$\Rightarrow CR = \frac{due \, date - current \, date}{processing \, time} \rightarrow \text{schedule job with smallest CR value next}$$

Scheduling n jobs on 1 machine

Total makespan \rightarrow independent of sequencing algorithm

SPT \rightarrow minimizes mean flow time

EDD → minimizes maximum lateness

Moore's algorithm → minimizes number of tardy jobs

Scheduling n jobs on m machines

Permutation schedules: schedules in which the sequence of jobs is the same on both machines.

Johnson's Rule for n jobs on 2 serial

<u>Rule</u>: Job i precedes job (i + 1) if $Min(A_i, B_{i+1}) < Min(A_{i+1}, B_i)$

- $A_i = processing time of job i on machine A$
- $B_i = processing time of job i on machine B$

Implementation:

- 1) List all jobs with their M1 and M2 process times
- 2) Select the shortest processing time on the list
 - o If it is a M1 time, schedule job first
 - o If it is a M2 time, schedule job last
 - o Cross this job off list
- 3) Repeat Step 2 through the rest of job

Build optimal schedule (Gantt Chart) and compute makespan, mean flow and mean idle.

Johnson's Rule for n jobs on 3 serial

<u>Rule</u>: If $Min(A_i) \ge Max(B_i)$ or $Min(C_i) \ge Max(B_i)$

- → 3-machine problem can be reduced to a 2-machine problem.
- → Define $A'_i = A_i + B_i$ and $B'_i = B_i + C_i$ and solve the problem.

Facilities layout and design

Designing new facilities or redesigning existing facilities.

Types of layouts

- Fixed position layouts → for large items
- Product layouts \rightarrow flow shop, product oriented
 - ⇒ Work centers organized around the operations needed to produce a product
 - \Rightarrow Create optimal flow
- Process layouts → job-shop, process oriented
 - ⇒ Grouping similar machines with similar functions
 - ⇒ Optimize machine utilization
- Group technology layouts / Work cells
 - ⇒ Based on the needs of part families

Product oriented production

- Limited range of high quantity products
- Highly capital intensive
- Not work intensive (reduced material handling costs)
- Little WIP inventory and short lead times
- → Low flexibility but high efficiency

Process oriented production

- Many low quantity products
- General-purpose machinery
- Reduced capital intensity
- Work intensive (higher material handling costs)
- Production in batches → higher WIP inventory and longer lead times
- → High flexibility but low efficiency

Patterns of flow

- Activity relationship chart
 - ⇒ Each pair of operations is given a **letter** to indicate the desirability of locating the operations near each other.
- From-To chart
 - ⇒ Can show:
 - o Distances between work centers
 - Numbers of materials handling trips
 - Materials handling costs

Quadratic assignment problem

Material handling costs depend on the location of other facilities.

See slides

Computerized layout techniques

- CRAFT \rightarrow improvement technique
 - ⇒ Improves materials handling costs
 - ⇒ Consider pair-wise interchanges of departments:
 - $\circ \quad \text{Have adjacent borders} \\$
 - Have the same area
- ALDEP → construction routine
 - ⇒ First department is chosen random
 - ⇒ Next based on closeness rating
- CORELAP → similar to ALDEP, but uses more careful selection criteria
 - ⇒ First department is chosen based on Total Closeness Rating (TCR)
 - ⇒ Highest TCR first

Line balancing

Single-model line balancing

Manufacturing a product on an assembly line:

- Tasks: {1, 2, ..., K}
- Task times t_k
- Precedence constraints (precedence graph)
- Cycle time c: time between the completion of two consecutive products.
 - $\Rightarrow c = takt time$ = $\frac{available \ production \ time \ per \ day}{total \ demand \ per \ day} = \frac{T}{d}$
- ➔ Feasible line balance = assignment of each task to a station such that the precedence constraints and further restrictions are fulfilled.

Main objective: minimizing idle time over all stations {1, 2, ..., n}

$$Minimize\left(nc - \sum_{k=1}^{K} t_k\right) = nc - cst$$

 \Rightarrow By minimizing number of stations for a given cycle: SALB I

 \Rightarrow By minimizing cycle time for a given number of stations: SALB II

Branch-and-bound

Systematically enumerating candidate solutions by proceeding through a search tree. Every node in the three is a subset of a solution.

Update first-fit heuristic (IUFF):

- 1) Assign a numeric score n(x) to every task
- 2) Update the set of eligible tasks \rightarrow immediate predecessors
- 3) Assign the task with the highest score to the first station
 - ⇒ Keep in mind capacity- and precedence constraints!
 - ⇒ Go to step 2

Numeric score functions n(x):

- Positional weight
- Reverse positional weight
- Number of successors
- Number of immediate successors
- Task time
- Backward recursive positional weight
- Backward recursive edges

Enumeration procedure Hoffmann

- 1) Minimize station idle time \rightarrow assigned to station 1
- 2) Repeated for station 2 using an updated precedence feasible list.
- 3) Repeated for each station until all tasks have been assigned.

Evaluation of heuristics

Balance Delay (BD)

Total idle time as a percentage of total available working time.

$$BD = \frac{nc - \sum_{k=1}^{K} t_k}{nc}$$

Line Efficiency (LE)

$$LE = 1 - BD = \frac{\sum_{k=1}^{K} t_k}{nc}$$

Smoothness Index

 $Index = \sqrt{\sum_{i=1}^{n} (maximum \ station \ time - station \ time_i)^2}$

➔ Perfect balance: index = 0

Assembly Line Balancing (ALB)

Single assembly line balancing (SALB)

- 1 product
- Serial production
- 1 processing scheme
- Deterministic task times

General assembly line balancing (GALB)

- Stochastic task times
- Multi/mixed-model lines
- Processing alternatives
- Additional constraints
- ...

Different objectives

Minimize the number of stations subject to a given output target for a certain planning horizon (\rightarrow specified by the cycle time c or the production rate).

- Minimize cycle time $c \rightarrow or$ maximize production rate
- Minimize cost for a given output target
- Maximize profit

SALB with stochastic task times

$m_k = average \ task \ time \ for \ task \ k$

Reduce the problem to a deterministic problem:

- Assign tasks to stations until a predetermined proportion of the cycle time is reached.
- Assign tasks to stations while the probability that the tasks assigned to that station are finished within the cycle time is greater than a predetermined value α.

Multi/mixed-model ALB

Multi-model lines \rightarrow batches of two or more models are produced on one and the same line

Mixed-model lines \rightarrow different models are produced on the same line (lot sizes = 1)

Mixed-model line sequencing

Inefficiencies:

- Idleness
- Work deficiency
- Utility work
- Work congestion

Time and Space constrained ALB problems

- Balancing the line is subject to layout constraints \rightarrow available space in each station
- One-dimensional approach to area constraints
- Each task:
 - Determined duration t_i
 - Fixed know area requirements a_i
- Stations:
 - Fixed time = cycle time c
 - Fixed area = A

Lean Management

Operational Excellence

QCD (= Quality, Cost, Delivery) is what the customer wants.

What is Lean?

- Management method
- Aimed at improving the customer experience
- By striving towards excellent internal processes
- Through empowered employees
- Supported by a specific management style
 - ⇒ Coaching, consensus, avoid to dictate solutions
- Lean tools

Toyota Production System

The core of the Lean concept.

Lean manufacturing = manufacturing philosophy which shortens the time line between the customer order and the product shipment by *eliminating waste*.

Foundation of Lean

Resource efficiency vs flow efficiency

Muda, mura, muri

Eliminate:

- MUDA = waste → 7 categories of non-value added activities (NVA)
- MURA = unevenness → variations in production planning, in manufacturing targets, workloads
- MURI = overburden \rightarrow overburdening of people (mentally or physically) or machines

What is waste?

= anything that adds Cost to the product without adding Value.

7 types of waste:

- Rework
- Motion
- Overproduction
- Transportation
- Inventory \rightarrow worst kind: hides the other wastes and therefore perpetuates them
- Processing
- Waiting

Lean 'trains' people in thinking and exploring

- TWI = training within industry
- KATA = developing routines
- PDCA = methodical solving of problems
- Poka-Yoke = safeguarding solutions

Value, Waste, Flow, Pull, Improve

Lean thinking in 5 steps:

- 1) Specify the **value** that the customer wants
- 2) Identify the value stream & eliminate waste in it
- 3) Make the product **flow**
- 4) Let the customer **pull**
- 5) And strive for **perfection** every day

Lean management

Human Resource practices:

- Employee participation
- Teamwork
- Feedback
- Training
- Reward and recognition

Value stream mapping

Typical process data:

- C/T (cycle time), P/T (process time, process lead time), C/O (change-over time)
- Uptime % \rightarrow time during which a machine is in operation
- EPE (process batch)

- Number of operators & work content = C/T x number of operators
- Number of product variants
- Working time (minus breaks)
- Scrap rate

Convert units into lead time using Little's law: I = R x T \rightarrow T = I/R

Future state questions:

- Demand:
 - 1) What is the takt time for the chosen product family?
 - 2) Will you build to a finished goods supermarket from which the customer pulls, or directly to shipping?
- Material flow:
 - 3) Where can you use continuous flow processing?
 - 4) Where will you need to use supermarket pull systems in order to control production of upstream processes?
- Information flow:
 - 5) What single point in the production chain (pacemaker process) should you schedule?
 - 6) How should you level the production mix at the pacemaker process?
 - 7) What consistent increment of work should you release and takeaway at the pacemaker process?
- Work plan:
 - 8) What process improvements will be necessary for the value stream to flow as your future-state design specifies?

Continuous improvement with Lean Management

Roadmap for productivity improvement

Preparing for change

- 1) Formal decision to change
 - Employees get more to say and become more empowered
 - Management plays a more supporting role (instead of imposing solutions)

2) Organizing for change

- Improvement KATA:
 - Understand the direction: what does the customer really want?
 - Understand the current state
 - Grasp current situation → swimlane, VSM, Makigami, process map
 - Identify muda, mura , muri → WASTE (7 types: downtime)
 - Define the next target state
 - PDCA (= Plan, Do, Check, Action) towards target state: what do we have to improve?

3) <u>Learning about Lean</u>

⇒ Eliminate Waste, Maximize Value Adding, Minimize Non Value Adding

Improving step by step

4) Local Diagnosis

 \Rightarrow Starting shot \rightarrow Generate ideas \rightarrow Prioritize ideas \rightarrow Analyze initiatives

- 5) Local Improvement
 - Problem solving techniques
 - Problem = difference between the current situation and the ideal situation.
 - Root cause analysis and 5x Why
 - Identify root causes (inputs) associated with specific problems (outputs)

• Visual management

- The ability to understand the status of (production) zone in 5 minutes or less by simply observing, without the use of computers and without talking to someone.
 - Example: traffic signs, low fuel sign in auto's, orange bicycle pad, ...
 - Use of lights, colors and signs
- **5**S
- S1: Sort → discard what no longer needed (necessary vs non necessary)
- S2: Stabilize/Straighten → everything a fixed place (ex. shadow boards)
- S3: Shine/Scrub → cleaning and inspection
- S4: Standardize → make sure that everything we have realized in the first three steps becomes a standard (tools, checklists)
- S5: Sustain \rightarrow hold on to the applied changes (checklists, audits)
- $\circ \quad \text{Standard Work} \\$
- 6) <u>Kaizen Showcase</u>
 - Kaizen = 'to continuously improve'
 - Kaizen showcase/event = intensive improvement activity, from analysis to implementation.
 - o Daily Kaizen vs Kaizen events

Making improvement sustainable

- 7) <u>Sustaining</u>
 - \circ KPI's \rightarrow Key Performance Indicators
 - Visualizing data (ex. bar graph, trend graph, pie graph, pareto graph)
 - Improvement boards
- 8) <u>Networking and comparing</u>
- 9) Integration with management follow-up
 - o 100 % employee education
 - People empowerment