
Search Methods

Michiel Blommaert

December 2019





CHAPTER 1

Introduction to Search Methods

1.1
PROBLEM FORMULATION

A problem-solving process consists of three steps:
• Formulation of the problem. This means we have to define the problem, identify

the possible solution alternatives (or search space, S) and define the value criteria.
• Analysis of the problem.
• Interpretation: We evaluate the possible solutions and make our decision.

The problem formulation is the first step in the problem-solving process. We
will illustrate this using a shortest-path problem. We search the shortest path be-
tween two Romanian cities: Timisoara and Bucharest (Fig. 1.1). This problem (and
any other problem) can be defined by four items: the (initial) state, some actions, a
goal test and a path cost.

In this particular problem, we start in Timisoara. So, the initial state x is Timisoara.
Each state x has a set of action–state pairs S(x). For example: S(Timisoara) =
{< Timisoara → Arad,Arad >, ...}. Our destination is Bucharest, so we can formu-
late the goal test explicitly: x = Bucharest. A goal test can also be implicit. The
path cost g(x) is the sum of distances in this case.

A solution is a sequence of actions leading from the initial state to a goal state.
The optimal solution is the solution with the smallest path cost. To visualize the
problem, we create a search tree. Each node constitutes part of a search tree
and includes a state, a parent node, an action, the path cost and the depth (e.g.
Lugoj, Fig. 1.2). Using a search tree, we can explore the state space by generating
successors of already-explored states (also called expanding states).

The Expand function creates new nodes, filling in the various fields and using the
SuccessorFn function of the problem to create the corresponding states. The order
in which we select nodes for expansion is called the search strategy or method.

3



4 INTRODUCTION TO SEARCH METHODS

Figure 1.1: A shortest path problem in Romania

Figure 1.2: An example of a node in a search tree



CHAPTER ONE 5

Strategies are evaluated along the following dimensions:

• Completeness. Does it always find a solution if one exists?
• Time complexity or number of nodes generated.
• Space complexity or maximum number of nodes in memory.
• Optimality. Does it always find a least-cost (or optimal) solution?

Time and space complexity are measured in terms of (i) maximum branching
factor of the search tree b (i.e. the number of successors generated by a given node),
(ii) depth of the least-cost solution d and (iii) maximum depth of the state space m
(may be ∞).

1.2
CLASSIFICATION OF SEARCH METHODS

We can classify search methods along two different dimensions (Fig. 1.4).
• Blind vs. heuristic search methods. Blind search is also called uninformed or brute

force search. It is totally brute in nature because it doesn’t have any domain spe-
cific knowledge. The search process remembers all the unwanted nodes which
are no use for the search process. Therefore, large memory is required. By the
use of domain specific knowledge, the search process can be reduced. This pro-
cedure is called heuristic search. On the basis of experience or judgement, it
offers a reasonable solution to a problem, but the mathematically optimal solution
is not guaranteed. No time is wasted in this type of search and no large memory
is required.

EXAMPLE 1.1 In a traveling salesman problem, a salesman has to plan a tour of cities
that is of minimal length. Because of its simplicity, the nearest neighbor heuristic is
a great method to solve this TSP (traveling salesman problem). In this heuristic, the

Figure 1.3: The search tree of a traveling salesman problem

salesman starts at some city and then visits the city nearest to the starting city, and so
on, only taking care not to visit a city twice. This method is fast, but doesn’t guarantee
optimality.

• Systematic vs. non-systematic search methods. Non-systematic heuristics are called
metaheuristics. Metaheuristics are problem-independent techniques that can be



6 INTRODUCTION TO SEARCH METHODS

Figure 1.4: Classification of search methods

applied to a broad range of problems. (Systematic) heuristics are often problem-
dependent, that is, you define a heuristic for a given problem. You could say that
a heuristic exploits problem-dependent information to find a ‘good enough’ solu-
tion to a specific problem, while metaheuristics are, like design patterns, general
algorithmic ideas that can be applied to a broad range of problems.
Metaheuristics are generally applied to problems for which there is no satisfactory
problem-specific algorithm or heuristic solutionmethod. Examples are genetic al-
gorithms, simulated annealing and tabu search.



CHAPTER 2

Uninformed Search Methods

Uninformed or blind search strategies use only the information available in the prob-
lem definition. In this chapter, we will discuss four (systematic) blind search meth-
ods: (i) breadth-first search, (ii) depth-first search and two variants of the latter: (iii)
depth-limited search and (iv) iterative deepening search.

2.1
BREADTH-FIRST SEARCH

The breadth-first algorithm starts (inmost of the cases) at the tree root and explores
all the neighbour nodes at the present depth prior to moving on to the nodes at the
next depth level. The nodes waiting in a queue to be explored, called fringe, is a first-
in-first-out (FIFO) queue, i.e., new successors go at the end of the queue. Coded in
Python, the breadth-first method has the following structure:

def BFS(graph , initial_node , goal_node):
fringe = [start_node]
while len(fringe) > 0:

v = fringe[0]
if v == goal_node:

return v
for w in graph.adjacentEdges(v):

fringe.append(w)

EXAMPLE 2.1 We will apply the breadth-first algorithm to the shortest-path problem in
Romania. First we check if the initial node is the goal state. Because Timisoara is not

7



8 UNINFORMED SEARCH METHODS

(a)

(b)

Figure 2.1: Breadth-first search method example

the goal state, we add all the adjacent nodes of Timisoara to the queue (or fringe). The
adjacent nodes of Timisoara are Arad and Lugoj. Because Timisoara is explored, the
first node in the fringe becomes Arad. Arad is also not the goal state. So, we add all the
adjacent nodes of Arad to the queue (Zerind and Sibiu). The first node now becomes
Lugoj. Notice that we explore the first depth level nodes (Arad and Lugoj) first before
moving on to a deeper level. Lugoj is again not the goal state. We continue this process
until the goal state is found.

We will now evaluate the breadth-first strategy along the four criteria:
• Completeness. The BFS method always finds a solution if one exists (if the branch-

ing factor b is finite).
• Time complexity or the number of nodes generated. With branching factor b and

depth of the optimal solution d we have:

1 + b+ b2 + ...+ bd + (bd+1 − b)

We assumed that the optimal node is the last node we explore at the optimal solu-
tion depth. That is why we added (bd+1 − b) to the sum.
In computer science, big O notation is used to classify algorithms according
to how their running time or space requirements grow as the input size grows.
Big O notation is a mathematical notation that describes the limiting behavior of
a function when the argument tends towards infinity. As b grows large, the bd+1

term will come to dominate, so that all other terms can be neglected. So the big
O notation captures what remains:

O(bd+1)



CHAPTER TWO 9

• Space complexity or the maximum number of nodes in memory. This is the same
as the time complexity, since the BFSmethod keeps every node inmemory (either
in fringe or on a path to fringe).

• Optimality. The BFS solution is optimal if we assume that deeper solutions are
less optimal (step-cost equal to 1). In other cases (like the TSP in Romania), the
BFS solution can be suboptimal.
Space is the biggest problem, more than time.

2.2
DEPTH-FIRST SEARCH

The depth-first search (DFS) algorithm starts at the tree root and and explores as
far as possible along each branch before backtracking (i.e. abandoning a branch as
soon as that branch cannot possibly contain a valid solution. The fringe is a last-in-
first-out (LIFO) queue, i.e., new successors go at the front of the queue. Coded in
Python, the DFS method has the following structure:

def DFS(graph , initial_node , goal_node):
fringe = [start_node]
while len(fringe) > 0:

v = fringe[0]
if v == goal_node:

return v
for w in graph.adjacentEdges(v):

fringe.insert(0, w)

EXAMPLE 2.2 We will apply the depth-first algorithm to the shortest-path problem in
Romania. First we check if the initial node is the goal state. Because Timisoara is not
the goal state, we add all the adjacent nodes of Timisoara to the queue (or fringe). The
adjacent nodes of Timisoara are Arad and Lugoj. Because Timisoara is explored, the
first node in the fringe becomes Arad. Arad is also not the goal state. So, we add all
the adjacent nodes of Arad at the front of queue (Zerind and Sibiu). The first node
now becomes Zerind. Notice that we explore the Timisoara-Arad-Zering branch first
before moving on to another branch. Zering is again not the goal state. We continue
this process until the goal state is found.

The properties of the depth-first strategy are not that good:
• Completeness. The BFS method fails to find a solution in infinite-depth spaces

(m = ∞). In some cases, this can be solved by avoiding repeated states along a
path (e.g. returning from Arad to Timisoara is not a option).

• Time complexity or the number of nodes generated. With branching factor b and
maximum depth of the state space m we have:

1 + b+ b2 + ...+ bm

This is of course again a worst-case representation: we assume that the solution



10 UNINFORMED SEARCH METHODS

(a)

(b)

Figure 2.2: Depth-first search method example

is found on the last branch at maximum depth. Written in big O notation we have:

O(bm)

We say that the algorithm has order of bm time complexity.
• Space complexity or the maximum number of nodes in memory. We only need to

remember a single path and the expanded unexplored nodes. We have a linear
space:

bm+ 1 = O(bm)

• Optimality. No, it may find a non-optimal goal first.

2.3
DEPTH-LIMITED AND ITERATIVE DEEPENING SEARCH

To avoid the infinite depth problem of the DFS algorithm, we can decide to only
search until depth l, i.e. we don’t expand beyond depth l. This is what we call
depth-limited search. The time and space complexity is better (respectively O(bl)
and O(bl)). But what if the solution is deeper than l? There will be no solution.
We can solve this problem by increasing l iteratively. This is what we call iterative
deepening search. The IDS algorithm always finds a solution.

The number of nodes generated in an iterative deepening search to depth d with
branching factor b is:

(d+ 1)b0 + db1 + ...+ 2bd−1 + 1bd = O(bd)



CHAPTER TWO 11

Figure 2.3: Iterative deepening search example



12 UNINFORMED SEARCH METHODS

Criterion Breadth-
First

Depth-
First

Depth-
Limited

Iterative
Deepen-
ing

Complete? Yes No No Yes
Time O(bd+1) O(bm) O(bl) O(bd)
Space O(bd+1) O(bm) O(bl) O(bd)
Optimal Yes No No Yes

Figure 2.4: Summary of uninformed search methods

The maximum number of nodes in memory is:

bd+ 1 = O(bd)

We can conclude that IDS inherits the memory advantage of depth-first search (lin-
ear), and is better in terms of time complexity than breadth first search.



CHAPTER 3

Informed Search Methods

In uninformed search methods (like BFS and DFS), when we are at a node, we can
consider any of the adjacent as next node. So both BFS and DFS blindly explore
paths without considering any cost function. An informed search method uses an
evaluation function f(n) to decide which adjacent node is the most promising and
then explores it. So, the nodes in fringe are ordered in decreasing order of desir-
ability and the desirability of a node is estimated by the evaluation function. This is
also known as best-first search.

In this chapter, we will discuss two algorithms, each having a different evaluation
function (or heuristic): greedy best-first search and A* search.

3.1
GREEDY BEST-FIRST SEARCH

For a greedy best-first search the evaluation function f(n) is a heuristic, i.e. an
estimation of the cost from node n to the goal. Greedy best-first search expands the
node that appears to be the closest to the goal.

EXAMPLE 3.1 For example, if we apply greedy best-first search to the shortest path
problem in Romania, we can use the straight-line distance from a node n to Bucharest
as the heuristic to evaluate the desirability of this node. So,

f(n) = hSLD(n)

with hSLD(n) the straight-line distance. Using this heuristic we can search for the short-
est path between Arad and Bucharest (Fig. 3.2).
• Arad has three adjacent nodes: Sibiu, Timisoara and Zerind which have a straight-line

distance to Bucharest of respectively 253, 329 and 374 kilometers (see table in Fig.
3.1). Sibiu is the most desirable node, because it has the shortest SLD to Bucharest.
So, we will expand the Sibiu node.

13



14 INFORMED SEARCH METHODS

• Sibiu has four adjacent nodes from which Fagaras has the shortest SLD (176 km).
This is also shorter than the unexplored nodes at the first depth level (Timisoara and
Zerind). Fagaras is thus the most desirable node and we will expand it.

• Fagaras has two adjacent node. One of these is Bucharest, our goal node. The solution
is Arad–Sibiu–Fagaras–Bucharest.

Figure 3.1: Straight-line distance to Bucharest

Below are the properties of the greedy best-first strategy:
• Completeness. The greedy best-first method does not always find a solution. It can

get stuck in loops (e.g. Leuven–Brussels–Leuven–Brussels ... in Fig. 3.3)
• Time complexity is O(bm), but a good heuristic can give dramatic improvement.
• Space complexity is the same as time complexity, since all the nodes are kept in

memory.
• Optimality. No, it may find a non-optimal path. For example, the path found in the

SPP in Romania is not the optimal path (Fig. 3.4).



CHAPTER THREE 15

Figure 3.2: Example greedy best-first search algorithm

Figure 3.3: Shortest-path problem from Leuven to Antwerp



16 INFORMED SEARCH METHODS

Figure 3.4: The greedy path versus the optimal path (shortest-path example)



CHAPTER THREE 17

3.2
A* SEARCH

The idea of A* search is avoiding paths that are already expensive. The evaluation
function is the sum of the cost so far to reach the node g(n) and the estimated cost
from the node to the goal h(n). Brief, the evaluation function is the estimated total
cost of the path through n to the goal:

f(n) = g(n) + h(n)

A* search is actually a form of (implicit) backtracking.

EXAMPLE 3.2 For example, if we apply A* search to the shortest path problem in Roma-
nia, h(n) is the straight-line distance from a node n to Bucharest like the greedy method
and g(n) is the distance so far to reach the node. So,

f(n) = g(n) + hSLD(n)

with hSLD(n) the straight-line distance. Using this evaluation function we can search for
the shortest path between Arad and Bucharest (Fig. 3.6). The solution is Arad–Sibiu–
Rimnicu Vilcea–Pitesti-Bucharest. This is also the optimal solution (Fig. 3.4).

Does A* search always offer an optimal solution? The answer is yes, if the heuris-
tic h(n) is admissible, i.e. it never overestimates the cost to reach the goal (it is
optimistic). A heuristic h(n) is admissible if for every node n

h(n) ≤ h∗(n)

where h∗(n) is the true cost to reach the goal state from n. For example, the straight-
line distance used in the shortest-path example in Romania will always be less than
the actual distance. If there are two (or more) admissible heuristics, then we say
that one heuristic h1 dominates another heuristic h2 if

h2 ≥ h1

for all n.
But how do we know if a heuristic is admissible? The cost of an optimal solution

to a relaxed problem (i.e. a problem with fewer restrictions on the actions) is an
admissible heuristic for the original problem.

EXAMPLE 3.3 Let’s apply A* search on an 8-puzzle (Fig. 3.5). There are two possible
admissible heuristics that we can use:
• The number of misplaced tiles ha(n).
• The total Manhattan distance hb(n), i.e. the sum of the number of squares from the

desired location for each tile.
Both heuristics are admissible because they both give the shortest solution for a relaxed
version of the puzzle. If the rules of the puzzle are relaxed so that the tile can move
anywhere, then ha gives the shortest solution. If the rules of the puzzle are relaxed
so that the tile can move to any adjacent square, then hb gives the shortest solution.
Typical search costs (average number of expanded nodes) for this problem are:

d = 12 IDS = 3,644,035 nodes
A∗(ha) = 227 nodes
A∗(ha) = 73 nodes



18 INFORMED SEARCH METHODS

d = 24 IDS = too many nodes
A∗(ha) = 39,135 nodes
A∗(ha) = 1,641 nodes

We see that in this case, hb dominates ha.

Figure 3.5: 8-puzzle problem



CHAPTER THREE 19

Figure 3.6: Example A* search algorithm





CHAPTER 4

Metaheuristics

Heuristics are often problem-dependent, that is, you define a heuristic for a given
problem (like in Ex. 3.1 or 3.3). This kind of heuristics are called systematic heuris-
tics. Metaheuristics are non-systematic. Metaheuristics are problem-independent
techniques that can be applied to a broad range of problems. You could say that a
heuristic exploits problem-dependent information to find a ‘good enough’ solution
to a specific problem, while metaheuristics are, like design patterns, general algo-
rithmic ideas that can be applied to a broad range of problems.

Global (or complete) search algorithms like A* will always find the correct or
optimal solution if there is one, given enough time. But, in a lot of practical cases,
this is inefficient.

In many optimization problems, the path to the goal is irrelevant. The goal state
itself is the solution and the state space is a set of complete configurations. In such
cases, we can use local search algorithms. Local search algorithms move from
solution to solution in the search space by applying local changes, until a solution
deemed optimal is found or a time bound is elapsed. We keep a single current state
and try to improve it. Local search algorithms like greedy search will not always
find the correct or optimal solution, if one exists. They have a tendency to become
stuck in suboptimal regions or on plateaus where many solutions are equally fit
(Fig. 3.3). They sacrifice completeness for greater efficiency by ordering partial
solutions by some heuristic predicting how close a partial solution is to a complete
one.

EXAMPLE 4.1 A great example to illustrate the limits of local search is gradient descent.
The goal of gradient descent is to minimize an objective function f(x). The algorithm
only permits moves to neighbour solutions that improve the current objective function
value and ends when no improving solutions can be found. The final x obtained by a
descent method is called a local optimum, since it is at least as good as or better than
all solutions in its neighborhood. The evident shortcoming of a descent method is that
such a local optimum in most cases will not be a global optimum (Fig. 4.1).

21



22 METAHEURIST ICS

Figure 4.1: Gradient descent, stuck at local optimum

Many metaheuristics were proposed to improve local search heuristics in order
to find better solutions. Such metaheuristics include simulated annealing and tabu
search. These metaheuristics can both be classified as local search-based or global
search metaheuristics. Other global search metaheuristic that are not local search-
based are usually population-based metaheuristics, like genetic algorithms.

4.1
GENETIC ALGORITHMS

A genetic algorithm is a search heuristic that is inspired by Charles Darwin’s theory
of natural evolution. This algorithm reflects the process of natural selection where
the fittest individuals have a higher chance for being selected for reproduction in
order to produce offspring of the next generation.

This notion can be applied for a search problem. We consider a set of solutions
for a problem and select the set of best ones out of them. Five phases are consid-
ered in a genetic algorithm: (i) the initial population, (ii) the fitness function, (iii)
selection, (iv) crossover and (v) mutation.

The process begins with a set of k randomly generated states which is called a
the population. A state is characterized by a set of parameters (variables) known
as genes (Fig. 4.2). In a genetic algorithm, the set of genes (or chromosome) of
a state is represented using a string over a finite alphabet (often a string of 0s and
1s).

Figure 4.2: Population, chromosomes and genes



CHAPTER FOUR 23

The fitness function (or evaluation function) determines how fit a state is. It
gives a fitness score to each state. The probability that an individual will be selected
for reproduction is based on its fitness score.

Crossover is the most significant phase in a genetic algorithm. For each pair of
parents to be mated, a crossover point is chosen at random from within the genes
(with probability pc, otherwise the children are a copy of the parents). pc is typically
in the range [0.6, 0.9]. Offspring are created by exchanging the genes of parents
among themselves until the crossover point is reached (Fig. 4.3). The whole popu-
lation is replaced by the resulting offspring.

Figure 4.3: Crossover

In certain new offspring formed, some of their genes can be subjected to a mu-
tation with a low random probability. This implies that some of the bits in the bit
string can be flipped with probability pm independently for each bit. The mutation
rate pm is typically in the range of

1

N
≤ pm ≤ 1

L

with N the population size and L the chromosome length. Mutation occurs to main-
tain diversity within the population and prevent premature convergence.

The algorithm terminates if the population has converged (does not produce
offspring which are significantly different from the previous generation). Then it is
said that the genetic algorithm has provided a set of solutions to our problem.

4.1.1 The Simple Generic Algorithm

John Holland introduced genetic algorithms in 1960. Holland’s genetic algorithm
is now known as the simple genetic algorithm (SGA).

The SGA has been subject of many (early) studies and is still often used as bench-
mark for novel genetic algorithms. But it shows many shortcomings:
• The representation is too restrictive.
• Mutation and crossovers are only applicable for bit-string and integer representa-

tions.
• The selectionmechanism is sensitive for converging populations with close fitness

values.
• The generational population model (the whole population is replaced by the re-

sulting offspring) can be improved with explicit survivor selection.
Other genetic algorithms use different representations, mutations, crossovers

and selection mechanisms.



24 METAHEURIST ICS

4.1.2 Alternative Crossover Operators

The performance with one-point-crossover (used in SGAs) depends on the order
that variables occur in the chromosomes. Genes that are near each other are more
likely to be kept together. Genes from opposite ends of the string can never be kept
together. This is known as positional bias. This can be exploited if we know about
the structure of our problem, but this is not usually the case.

A (partial) solution for the bias could be choosing n random crossover points
and split the strings along those points. The resulting parts are glued together,
alternating between parents (Fig. 4.4). Using n-point-crossover, we still keep
some positional bias.

Figure 4.4: n-point-crossover

Uniform crossover is a more general version of the n-point crossover. In this
scheme, at each bit position of the parent string, we toss a coin to determine whether
there will be swap of the bits or not (Fig. 4.5). Inheritance is independent of the
position using this method.

Figure 4.5: Uniform crossover

4.1.3 Crossover or Mutation?

Should we use crossover or mutation? Or both? It depends on the problem, but
there is a wide agreement that, in general, it is good to have both. Both have another
role:
• Crossover is explorative, i.e. gaining information on the problem. It makes a big

jump to an area somewhere in between two (parent) areas.
• Mutation is exploitative, i.e. using the information. It creates random small diver-

sions, thereby staying near (in the area of ) the parent.
Using mutations only is possible, but crossover-only-GAs do not work. To hit the
optimum you often need a lucky mutation.



CHAPTER FOUR 25

4.1.4 Design of the Representation

In biology, an organism’s genotype is the set of genes that it carries and an organ-
ism’s phenotype is all of its observable characteristics. We can make the parallel
with genetic algorithms: the characteristics of a state are represented by a string
over a finite alphabet, often a string of 0s and 1s (Fig. 4.6).

Figure 4.6: Phenotype vs. genotype

Smoother genotype-phenotypemapping, i.e. small changes in the genotype cause
small changes in the phenotype, makes life easier for the genetic algorithm.

EXAMPLE 4.2 An example of smooth genotype-phenotype mapping is Gray code of in-
tegers. Gray code is an ordering of the binary numeral system such that two successive
values differ in only one bit (Fig. 4.7).

Figure 4.7: Binary versus Gray code

Nowadays it is generally accepted that it is better to encode numerical variables
directly as integers or floating point variables. Some problems naturally have inte-
ger variables (e.g. image processing parameters), but others take categorical values
from a fixed set (e.g. blue, green, yellow, pink) which we can represent by integers.
For integer representation there are two principal forms of mutation:
• Random choice. A new value is randomly chosen from the set of permissible

integer values. This method is most suitable for categorical variables.
• Creep mutation. A small (positive or negative) integer value is added to the gene

value. The random value is sampled from a symmetric distribution around 0 with
a higher probability of small changes. This method is most suitable for ordinal
variables.



26 METAHEURIST ICS

Ordering (or sequencing) problems form a special type. These problems are
generally expressed as a permutation: if there are n variables then the representa-
tion is as a list of n integers, each of which occurs exactly once. For permutation
representation, normal mutation operators lead to inadmissible solutions. For ex-
ample, assume that a gene has value j. Changing to some other value k would mean
that k occurs twice now and j no longer occurs. Therefore we must change at least
two values. The mutation rate pm now reflects the probability that some operator
is applied once to the whole string, rather than individually in each position. For
permutation representation there are four principal forms of mutation:

(a) Insert mutation

(b) Swap mutation

(c) Inversion mutation

(d) Scramble mutation

Figure 4.8: Mutation methods for permutations

• Insert mutation. Two allele values are picked at random. We move the second to
follow the first, shifting the rest along to accommodate. Note that this preserves
most of the order and the adjacency information.

• Swap mutation. Pick two alleles at random and swap their positions. This pre-
serves most of the adjacency information (four links are broken), but disrupts the
order more.

• Inversion mutation. Pick two alleles at random and then invert the substring
between them. This preserves most of the adjacency information (only two links
are broken), but disrupts the order information.

• Scramble mutation. Pick a subset of genes at random and randomly rearrange
the alleles in those positions. Note that the subset does not have to be contiguous.

Also normal crossover operators will often lead to inadmissible solutions for per-
mutations. Many specialised operators have been devisedwhich focus on combining
order or adjacency information from the two parents:
• Order-1-crossover. The idea is to preserve the relative order in which the ele-

ments occur. The procedure has the following shape: (i) choose an arbitrary part
from the first parent and copy this part to the first child. (ii) Copy the numbers
that are not in the first part, to the first child, using the order of the second parent
starting right from the cut point of the copied part, wrapping around at the end.
Do the same for the second child, with the parent roles reversed.

• Partially mapped crossover (PMX). The procedure for parents p1 and p2 has
the following shape: (i) Choose a random segment and copy it from p1. (ii) Start-
ing from the first crossover point look for elements in that segment of p2 that have



CHAPTER FOUR 27

(a)

(b)

Figure 4.9: Order-1-crossover

not been copied. For each of these i, look in the offspring to see what element j
has been copied in its place from p1. Place i into the position occupied by j in p2,
since we know that we will not be putting j there (as it is already in the offspring).
(iii) Having dealt with the elements from the crossover segment, the rest of the
offspring can be filled from p2. The second child is created analogously.

(a)

(b)

(c)

Figure 4.10: PMX

4.1.5 Design of the Selection

Simple genetic algorithms use a generational model, i.e. each individual survives
for exactly one generation. The entire set of parents is replaced by the offspring.
At the other end of the scale are steady-state models, i.e. one offspring is generated
per generation and only one member of the population is replaced. We define the



28 METAHEURIST ICS

generation gap as the proportion of the population that is replaced (1 for SGA and
1/N for steady-state GA).

4.2
SIMULATED ANNEALING

Simulated annealing is a metaheuristic to approximate global optimization in a large
search space. It is often used when the search space is discrete (e.g. the traveling
salesman problem). The name and inspiration come from annealing in metallurgy,
a technique involving heating and slow cooling of a material to increase the size of
its crystals and reduce their defects. This notion of slow cooling implemented in the
simulated annealing algorithm is interpreted as a slow decrease in the probability
of accepting worse solutions as the solution space is explored. Accepting worse
solutions is a fundamental property of metaheuristics because it allows for a more
extensive search for the global optimal solution. The algorithm contains five steps:
• Initialize. Start with a random initial placement (initialize a very high tempera-
ture).

• Move. Perturb the placement through a defined move.
• Calculate energy. Calculate the change in the energy (∆E) due to the move made.

An increase in energy means that we come closer to the optimal solution.
• Choose. Depending on the change in the energy, we accept or reject the move. If
∆E > 0, we accept the move. Otherwise, the probability of acceptance pa depends
on the current temperature T :

pa = P (e−
∆E
T > r)

with r a random number between 0 and 1. As the temperature decreases, the
probability of accepting worse moves decreases. If T = 0, no worse moves are
accepted.

• Update and repeat. Update the temperature value by lowering the temperature.
Go back to the move-step.

The process is done until the freezing point is reached. Coded in Python, the
simulated annealing method has the following structure:

def SA(intial_c , T_0 , T_min):
c = initial_c
for T in range(T_0 , T_min - 1, -1):

E_c = energy(c)
n = next(c)
E_n = energy(n)
delta_E = E_n - E_c
if(delta_E > 0):

c = n
else if(math.exp(-(delta_E/T)) > random.uniform

(0, 1)):
c = n

return c



CHAPTER FOUR 29

Simulated annealing is one of the most important metaheuristics of combinato-
rial optimization, whose properties of convergence towards high quality solutions
are well known, although with a high computational cost. Due to that, it has been
produced a quite number of research works on the convergence speed of the algo-
rithm, especially on the treatment of the temperature parameter, which is known as
the cooling schedule or strategy:
• The initial temperature T0 must be hot enough to allow moves to almost all neigh-

bourhood state, else we are in danger of implementing steepest descent. But, it
must also not be so hot that we conduct a random search for a period of time (pro-
cessing time). If we know the maximum change in the energy function, we can
use this to estimate T0.

• The final temperature Tmin. It is usual to let the temperature decrease until it
reaches zero. However, this canmake the algorithm run for a lot longer, especially
when a geometric cooling schedule is being used. In practise, it is not necessary to
let the temperature reach zero because the chances of accepting a worse move are
almost the same as the temperature being equal to zero. Therefore, the stopping
criteria can either be a suitably low temperature or when the system is frozen at
the current temperature, i.e. no better or worse moves are being accepted.

• The plateau length. Theory states that we should allow enough iterations at each
temperature so that the system stabilises at that temperature (thermal equilib-
rium). Unfortunately, theory also states that the number of iterations at each tem-
perature to achieve this might be exponential to the problem size. We need to
compromise: we can either do this by doing (i) a large number of iterations at a
few temperatures, (ii) a small number of iterations at many temperatures or (iii) a
balance between the two. An alternative is to (iv) dynamically change the number
of iterations as the algorithm progresses. At lower temperatures it is important
that a large number of iterations are done so that the local optimum can be fully
explored. At higher temperatures, the number of iterations can be less.

• The temperature decrement can be either linear

Tt+1 = Tt − x

or geometric
Tt+1 = αTt

with α between 0.8 and 0.99 (from experience). Better results are found in the
higher end of this range. Of course, the higher the value of α, the longer it will
take to decrement the temperature to the stopping criterion.

EXAMPLE 4.3 A cooling startegy, first suggested by Lundy in 1986, is to only do one
iteration at each temperature, but to decrease the temperature very slowly. The formula
used by Lundy is:

Tt+1 =
Tt

1 + βTt

where β is a suitably small value.

The evaluation function (or energy function) is calculated at every iteration.
This is often the most expensive part of the algorithm. Therefore, we need to eval-
uate the energy level as efficiently as possible.



30 METAHEURIST ICS

4.3
TABU SEARCH

Tabu search is a metaheuristic search method employing local search methods:
it moves iteratively from one potential solution c to an improved solution n in the
neighborhood N(c) of c, until some stopping criterion has been satisfied (generally,
an attempt limit or a score threshold).

Like we already learned in the introduction of this chapter, local search methods
do not always find the optimal solution. Tabu search enhances the performance of
local search by relaxing its basic rules:
• At each step worsening moves can be accepted if no improving move is available

(like when the search is stuck at a strict local minimum). If there is no better
solution in neighbourhood N(c) of c then the next best solution n is chosen in
N(c).

• Another local search problem is that cycles can occur: c can be the best candidate
solution in N(n) where n is the best solution in N(c). We solve this by the use of
memory structures. Recency-based memory is the most common memory struc-
ture used in tabu search implementations. As its name suggests, this memory
structure keeps track of solutions attributes that have changed during the recent
past. To exploit this memory, selected attributes that occur in solutions recently
visited are labeled tabu-active, and particular moves that contain tabu-active ele-
ments, are those that become tabu. The solutions admitted to the modified neigh-
borhood, N∗(c), are determined by this short-term memory (STM). But, cycles are
not completely avoided. Only the last L moves are stored in a tabu list. If the list
is full, the last element is dropped. Sometimes it is necessary to overrule the tabu
status using aspiration level conditions. A simple and commonly used aspiration
criterion is to allow solutions which are better than the currently-known best so-
lution. Brief, the number of admissible moves in the neighborhood of the current
solution c depends on (i) the tabu activation rules, (ii) the move type, (iii) the as-
piration criteria and (iv) the tabu tenure, i.e. the number of iterations an attribute
remains tabu-active (Fig. 4.11).

Figure 4.11: Is a move admissible?



CHAPTER FOUR 31

Tabu search has several similarities with simulated annealing, as both involve
possible downhill moves. In fact, simulated annealing could be viewed as a special
form of tabu search where we use graduated tenure, that is, a move becomes tabu
with a specified probability.

There are many forms in which a simple tabu search implementation can be im-
proved by the use of long-term memory (LTM). The most commonly used methods
are frequency-based memory, strategic oscillation and path relinking.

4.3.1 Frequency-based Memory

Frequency-based memory provides a type of information that complements the in-
formation provided by recency-based memory, broadening the foundation for se-
lecting preferred moves. Two examples are:
• Transition measure, i.e. the number of iterations where an attribute has been

changed (e.g. added or deleted from a solution).
• Residence measure, i.e. the number of iterations where an attribute has stayed in

a particular position (e.g. belonging to the current solution).

4.3.2 Strategic Oscillation

Strategic oscillation operates by orienting moves in relation to a critical level, as
identified by a stage of construction or a chosen interval of functional values. Such
a critical level or oscillation boundary often represents a point where the method
would normally stop. Instead of stopping when this boundary is reached, however,
the rules for selecting moves are modified, to permit the region defined by the crit-
ical level to be crossed. The approach then proceeds for a specified depth beyond
the oscillation boundary, and turns around. The oscillation boundary again is ap-
proached and crossed, this time from the opposite direction, and the method pro-
ceeds to a new turning point (Fig. 4.12).

Figure 4.12: Strategic oscillation

The process of repeatedly approaching and crossing the critical level from dif-
ferent directions creates an oscillatory behavior, which gives the method its name.
Control over this behavior is established by generating modified evaluations and
rules of movement, depending on the region navigated and the direction of search.
The possibility of retracing a prior trajectory is avoided by standard tabu search



32 METAHEURIST ICS

mechanisms, like those established by the recency-based and frequency-basedmem-
ory functions.

4.3.3 Path Relinking

Path relinking generally operates by starting from an initiating solution, selected
from a subset of high quality (or elite) solutions, and generating a path in the neigh-
borhood space that leads toward the other solutions in the subset, which are called
guiding solutions (Fig. 4.13). This is accomplished by selectingmoves that introduce
attributes contained in the guiding solutions.

Figure 4.13: Path Relinking


