
 Regression analysis with two variables 

Basic concepts (CH2) 
Y: the expected consumption expenditures of a random household we want to determine 
X​i​: level of disposable income of that household 

population regression function ​(PRF)​ ​(linear both in parameters and(Y |X ) XE i = β1 + β2 i  
variables), only on average correct ⇒ deviations presented as stochastic error term  

(Y |X )µi = Y i − E i  
(Y |X ) X⇔ Y i = E i + µi = β1 + β2 i + µi  

Error term contains all variables that affect Y but that are not included in the model 
sample regression function ​(SRF)XY i

︿

= β1
︿

+ β2
︿

i  
If no data for an entire population, but only for a sample randomly taken, then there are 
estimators (parameters) needed to make an approximation, based on an estimator (method) 
Stochastic:​ changing over repeated sampling 
Deterministic:​ constant over repeated sampling 
 

Estimating the sample regression function (CH3) 
Ordinary least squares method (OLS) to avoid +/- errors cancelling out and |µ​i​| less interesting 

Numerical properties of the OLS estimator 
1. Sample regression line passes through the sample means of Y and X 
2. Mean = mean Y i

︿

Y i  

3. Average = 0µi
︿

 
4.  not correlated with µi

︿

X i  
5.  not correlated with µi

︿

Y i  

Gauss-Markov assumptions 
Additional assumptions ⇒ classical linear regression model (CLRM), tied to PRF not SRF 

1. Linearity in the parameters 
2.  

a. X-values fixed over repeated sampling: ​fixed regressor model 
b. X-values changing over repeated sampling: ​stochastic regressor model 

3. No ​systematically ​affection by variables/factors excluded from the model 
a. E(µ​i​)=0  (deterministic X​i​)  



b. E(µ​i​|X​i​)=0 (stochastic X​i​) 
⇒ X​i​ and µ​i​ not correlated 

4. Variance of µ​i​ constant (homoscedasticity) 
var(µ​i​|X​i​) = σ​2​ ​violation:​ var(µ​i​|X​i​) = σ​i​

2​ (heteroscedasticity) 
5. No correlation in error terms ⇒ no systematic pattern in error terms 

cov(µ​i​,µ​j​|X​i​,X​j​) = 0 for i ≠ j ​violation: ​autocorrelation 
6. #observations > #parameters to be estimated 
7. Variation in X-values 
8. No perfect multicollinearity 

Precision of the OLS estimator 
~variability of and over repeated sampling ⇒ and β1

︿

β2
︿

e(β )s 1
︿

e(β )s 2
︿

 
standard error​:  
Interpretation: ​standard deviation of the sampling distribution of this estimator 
Estimation:​ → formulas on sheete(β)s

︿

(β)se︿
︿

 
 
calculate the true variances, but µ​i​ ⇒ σ not known 
 
 

estimator for σ² and σ, ​unbiased: , n-2 degrees of freedom(σ )E ︿2 = σ2  
σ = standard error of the regression 
 

The bigger the variance of the residuals, the lower the precision 
The bigger the variance of the explanatory variable or the bigger the samplesize, the higher the 
precision 

Statistical properties of the OLS estimator 
All GM assumptions satisfied ⇒ OLS = best linear unbiased estimator (BLUE) 
Linear: estimator linear function of stochastic Y 

Unbiased: expected value the true population(β )E
︿ 

= β  
Efficient: smallest variance 

Coefficient of determination (R²) 
Measures how well the estimated regression line fits the sample data 
Calculates the proportion of the variance of Y​i​ explained by the variance of X​i 



The normality assumption (CH4) 
Extra assumptions needed because OLS never gives and ⇒ hypothesis testingβ1 β2  
Probability distribution of the parameters needed 
X​i ​deterministic ⇒ weighted average of µ​i​ with weight k​i​ fixed over repeated samplingβ

︿

2  

µβ
︿

2 = β2 + ∑
 

 
ki i  

Classical linear regression model assumes µ​i​ normally distributed (homoscedasticity) 
CLRM ⇒ CNLRM 

where n​ormally ​i​ndependently ​d​istributed (no autocorrelation)XY i = β1 + β2 i + µi ID(0, )µi ~ N σ2  

Properties of OLS estimator 
1. , unbiased, efficient, normally distributedβ

︿

1 β
︿

2  
2. unbiased and distributedσ︿2 χ2  
3. and distributed independently of β

︿

1 β
︿

2 σ︿2  
⇒ and are BUE: efficient for entire set of unbiased estimator (linear and non-linear)β

︿

1 β
︿

2  
⇒  because linear function of deterministic X​i(β X , )Y i ~ N 1 + β2 i σ2  
 

Interval estimation and hypothesis testing (CH5) 
Interval estimation:​ adding a margin to estimator such that it contains the true population with 
a certain probability 

with r(β )P
︿

− δ ≤ β ≤ β
︿

+ δ = 1 − α 0 < α < 1   
significance level, confidence coefficient (stochastic)α 1 − α  

Interpretation:​ when constructing confidence intervals with a confidence coefficient , over1 − α  
repeated sampling these intervals will contain the true population parameter in ( )% of theβ 1 − α  
cases 
Population parameter  is unknown ⇒ use as an unbiased estimatorσ2 σ︿2  
Which leads to confidence intervals  
r(β σ σ )P
︿

1 − tn−2,α/2
︿ 

β
︿

1
≤ β1 ≤ β

︿

1 + tn−2,α/2
︿ 

β
︿

1
= 1 − α  

r(β σ σ )P
︿

2 − tn−2,α/2
︿ 

β
︿

2
≤ β2 ≤ β

︿

2 + tn−2,α/2
︿ 

β
︿

2
= 1 − α  

Hypothesis testing: ​formulate a hypothesis , check whether is is possible by checkingβ2 = β*
2  

whether is sufficiently close to using the statistical properties of the OLS estimatorβ
︿

2 β*
2  



 
Via confidence interval:​ reject H​0​ if  does not lie within the confidence intervalβ*

2  

Via significance test:​ compute test statistic under H​0​:  ⇒  β2 = β*
2 t = σ︿

(β −β )
︿

2
*
2  

and reject H​0​ if |t| > t​n-2,⍺/2  

Terminology 
Statistically significant: if H​0​ can be rejected 

If t-test not significant, H​0​ cannot be rejected 
Never accept, only reject or don’t reject 

type-I error: rejecting H​0​ while correct, probability upper limit  ‘size’ ​as low as possibleα  

type-II error: not rejecting H​0​ while incorrect, probability ⇒  ​‘power’​ as low as possibleβ 1 − β  
⇒ trade-off 

One-sided hypothesis test 
If strong a priori indications 
H​0​ gets benefit of the doubt ⇒ theoretical proposition under the alternative hypothesis 

The ‘2-t’ rule of thumb 
If test statistic > 2 reject H​0​ because /σ , 6t = β

︿

2
︿ 

β
︿

2
= 1 9 ≈ 2  

Exact significance level (p-value) 
Lowest point at which H​0​ can be rejected 
Exact probability of making a type-I error 
No information about the power 

Analysis of variance (ANOVA) 
 H​0​: all of the variance in Y results from variance in µ (ESS=0)  β2 = 0  
 H​1​: a part of the variance in Y results from variance in X (ESS>0)=β2 / 0  



Relation between t and F-test for k​1​ = 1 
√F ≈ t  

Some extensions (CH6) 

Interpreting regression results 
XY i = β1 + β2 i + µi  

intercept: expected level of Y​i​ when X​i​=0β1  
slope: expected change in Y​i​ when X​i​ increases by 1β2  
elasticity: an increase in X​i​ by 1 percent induces an expected change in Y​i​ by percenteXY X /Yβ2 i i  

Linear in logs model 

 
Properties:​ under CNLRM ⇒  X​i​ deterministic, , OLS estimators and BUEID(0, )µi ~ N σ2 α︿ β

︿

2  
Interpretation:​ measures elasticity of Y​i​ to changes in X​iβ2  



Semi-log model 

 

 



Reciprocal model 

 

Choice of functional form 
Ideally theory based, but alignment with data mandatory ⇒ check R² but only if same 
dependent variable (so no Y​i​ with ln(Y​i​)) 
 

Multivariate regression analysis 

Estimating the sample regression function (CH7) 
For OLS to be unbiased, , all relevant variables have to be included in the model(µ )E i = 0  
If one variable (A) is strongly correlated with a variable (B) and another one (C), then the OLS 
parameter for C may include impact of A on B 
⇒ A is a ​confounding variable​, which needs to be controlled when estimating the impact of C 
on B 



Notation and interpretation 

 

 
  



Least squares estimation 
Orthogonal projection (two-step approach): 
Step 1 

  
Step 2 

 
Multivariate ordinary least squares (one-step approach): 
Parameters obtaining using LS criterion 

 
Which can be uses to calculate the 3 parameters (see formula sheet) 



Numerical properties of the OLS estimator 

 

Statistical properties of the OLS estimator 
where X XY i = β1 + β2 2i + β3 3i + µi ID(0, )µi ~ N σ2  

Regularity conditions: 
● X​2i​ and X​3i​ deterministic 
● #observations n > #parameters to be estimated k 
● Positive variance in X​2i​ and X​3i 
● No perfect multicollinearity: |cor(X​2i​,X​3i​)| = |r​23​| ≠ 1 

⇒ , and are BUE and normally distributedβ
︿

1 β
︿

2 β
︿

3  

Polynomial regression models 

 
 
 



Multivariate determination coefficient R² 
Indicates how well the estimated regression line fits the data by calculating the part of the 
variance in Y​i​ that is explained by the variance in X​2i​ and X​3i 

Adjusted determination coefficient R² 
R² always increases when explanatory variables are added ⇒ not useful when comparing 2 
models with different number of explanatory variables 
ModifiedR² = (1-k/n)R² 

 
 

Normality assumption and hypothesis testing (CH8) 
where X XY i = β1 + β2 2i + β3 3i + µi ID(0, )µi ~ N σ2  

, and are BUE and normally distributedβ
︿

1 β
︿

2 β
︿

3  

Statistical properties of OLS estimator 
, and normally distributedβ

︿

1 β
︿

2 β
︿

3  
 where k = df = n - 3n )σ /σ( − 3 ︿2 2 ~ χ2

k  

, and independently distributed from β
︿

1 β
︿

2 β
︿

3 σ︿2  
β )/σt = (
︿

i − βi
︿ 

β
︿

i
~ tn−3  

Joint significance of all coefficients 
ANOVA: H​0​: β2 = β3 = 0  
F-test: reject when > critical value 
Relation with R²:​ R²=0 ⇒ F=0, R²=1 ⇒ F=∞ 



Significance marginal contribution 
Sequential regression:​ ANOVA check whether adding variables change the explanatory power 
(ESS) significantly 
Remark:​ changing the order in which variables are added has an impact on the results, because 
adding A highly collinear with B that is already in the model will not impact the ESS a lot (thus 
concluding B only significant variable), switching the variables ⇒ A only significant 

General procedure F-test 
Test linear restrictions H​0 

Estimate ‘general’, unrestricted model, compute RSS​UR 
Derive the constrained model by imposing H​0 
Estimate constrained model, calculate RSS​R 
Test the hypothesis using F-test 

 

Chow test: coefficient stability 
Problem: ​time series ⇒ not stable over time, cross-sectional ⇒ not stable over groups/units 

 
Limitations: 

 



Regression with dummy variables (CH9) 
Necessary when variables are qualitative or categorical 

Consequences for OLS 
If qualitative as explanatory ⇒ model is linear ⇒ OLS appropriate 
If qualitative as dependent ⇒ typically non-linear model ⇒ OLS inappropriate, estimation using 
maximum likelihood (ML) 
Reference category:​ for which no dummy is included, choice does not influence results 
Example: 0 = black, 1 = white ⇒ black is reference category 

Dummy variable trap 
When m explanatory qualitative variables, only m-1 dummies can be included ​in a model with a 
constant 
Otherwise ​perfect multicollinearity 

Relaxing the assumptions of CLNRM 

Multicollinearity (CH10) 
(Perfect) multicollinearity:​ (perfect) linear relation between some or all explanatory variables 
Causes:​ dummy variables, model specification (X​i​ and X​i​²), large number of explanatory 
variables, lack of data… 
Consequences:​ parameters can’t be estimated (perfect mc), estimators have larger 
(co)variance, wider confidence intervals and lower t-stats 
It’s a sample problem: highly correlated variables, too much variance filtered out in multivariate 
regression 
Though OLS still unbiased and efficient (both only over repeated sampling), coefficients can’t be 
estimated precisely 

Detection 
= measuring the degree of multicollinearity using rules-of-thumb 
Compare R² with t-values (high with low) 
Calculate pairwise correlation (high) 
Estimate auxiliary regressions  
Compute variance inflation factor (VIF) for each variable (high compared to samplesize) 



Remedial measures 
Cannot be solved by changing estimation method 
Richer dataset 
Adjust specification 

Heteroskedasticity (CH11) 
Variance of µ​i​ is not constant 
Causes: ​population (error learning), data collection (outliers), specification errors (dropping 
relevant variables, wrong functional form) 
Consequences: ​OLS no longer efficient ⇒ GLS lower variance 

Generalized least squares (GLS) 

 

 



Consequences for testing based on OLS 
Heteroscedasticity acknowledged: valid inference, but wider confidence interval, lower 
significance 
Heteroskedasticity ignored: invalid inference, estimator biased and inconsistent 

Detection 
Calculate for entire population, check whether constantσi

2  
In practise: use estimator for , check whether constantμ︿i

2 σi
2  

Informal: ​intuitive(in cross-sections, heteroskedasticity rule rather than exception), graphical 
Formal: ​Goldfeld-Quandt test (non parametric), White’s general heteroscedasticity test 
(parametric) 

Goldfeld-Quandt test 
Assumption:  positively related to one of the explanatory variablesσi

2  
Test procedure: ​order observations based on X​i​, delete c (=⅙ of pop.) obs in the middle apply 
OLS to the 2 groups 

 



White’s general heteroscedasticity test  

 
Homoscedasticity: R²=0 

 

Remedial measures 
Check slides 

Autocorrelation (CH12) 
There is a systematic pattern in the error terms, positive or negative 
Mostly relevant for time series and panel data 
Causes: ​inertia, transformation of the data, specification errors, non-stationarity 
Consequences:​ assumption ⇒ µ​t​ follows an AR(1) process = autoregressive of the first order, 
OLS no longer efficient ⇒ GLS 



Properties AR(1) process 

 

 

 



Detection 
Runs test (nonparametric): #runs R outside confidence interval 
Durbin Watson d test: d close to 0 or 4 

Assumptions:​ X​i​ deterministic, AR(1) pattern, µ​i​ normally distributed, no lagged 
dependent variables like Y​t-1 

Breusch-Godfrey LM test: with i ≠ j=ρi / ρj  
 
If specifications errors present, model becomes inconsistent ⇒ other tests 

Dynamic models 

 

 



Specification errors (CH13) 
Nature of problem:​ exclude relevant/ include irrelevant variable, wrong functional form, 
measurement errors 
Consequences:  
Excluding relevant variable 

 

 
Including irrelevant variable​ ⇒ lose accuracy 

 

 
Wrong functional form 
OLS estimator biased and inconsistent 
 



Measurement errors in dependent variable 

 
Measurement errors in explanatory variable 

 

 

Model selection criteria 
Be consistent with the theory and data, encompassing, establish causality 
Purist: ​specification based on theory, then check whether irrelevant variables are included, 
general-to-specific approach 
⇒ often too strict 
Data mining:​ only variables that are significant are tested and added, specific-to-general, to fit 
the data as well as possible 
⇒ risk: significant correlations but not necessarily causal relations, real significance no longer 
nominal significance level 
Solution:​ set part of sample aside, compute a next observation, compare to observation you set 
aside and check whether model fits the data 



Detection 
Ramsey’s RESET test: add non-linear transformations of to Y​i​, use F-test, rejecting H​0​ ⇒Y

︿

i  
specification error 
Lagrange Multiplier (LM) test: add non-linear transformations of X​i​ to , compute nR², reject H​0µ

︿

i  
if > critical value 
Forecast test: use one part to estimate, use the other part to test the out-of-sampleχ2  
performance 

Endogeneity (CH18-20) 
Reverse causality: simultaneous equation model with at least 2 endogenous variables that 
influence each other 
Consequences:​ X​i​ stochastic and X​i​ and µ​i​ both dependent ⇒ OLS inconsistent 

 
 


