Regression analysis with two variables

Basic concepts (CH2)

Y: the expected consumption expenditures of a random household we want to determine
X;: level of disposable income of that household

E(Y|X;) =B, + B,X; population regression function (PRF) (linear both in parameters and
variables), only on average correct = deviations presented as stochastic error term
w,=Y,-EXX)

@Y, =EY|X)+u =P +BX;+

Error term contains all variables that affect Y but that are not included in the model

f’\i = BAl + [§\2Xi sample regression function (SRF)

If no data for an entire population, but only for a sample randomly taken, then there are
estimators (parameters) needed to make an approximation, based on an estimator (method)
Stochastic: changing over repeated sampling

Deterministic: constant over repeated sampling

Estimating the sample regression function (CH3)

Ordinary least squares method (OLS) to avoid +/- errors cancelling out and |u | less interesting

Numerical properties of the OLS estimator

Sample regression line passes through the sample means of Y and X
Mean )/’\l: mean Y,

1
2
3. Average ;T,: 0
4 ﬁl not correlated with X;
5

ﬁl. not correlated with Y,

Gauss-Markov assumptions

Additional assumptions = classical linear regression model (CLRM), tied to PRF not SRF
1. Linearity in the parameters
2.
a. X-values fixed over repeated sampling: fixed regressor model
b. X-values changing over repeated sampling: stochastic regressor model
3. No systematically affection by variables/factors excluded from the model
a. E(p,)=0 (deterministic X.)



b. E(u|X)=0 (stochastic X))
= X, and y, not correlated
4. Variance of p. constant (homoscedasticity)
var(u|X,) = o violation: var(u|X) = o2 (heteroscedasticity)
5. No correlation in error terms = no systematic pattern in error terms
cov(u,W[X;,X;) = 0 for i # j violation: autocorrelation
6. #observations > #parameters to be estimated
Variation in X-values
8. No perfect multicollinearity

N

Precision of the OLS estimator

~variability of BAI and [BAzover repeated sampling = se(BAl)and se(BAQ)
standard error:

Interpretation: standard deviation of the sampling distribution of this estimator
Estimation: se(ﬁ) — sAe(B\) formulas on sheet

var(62)= L o var(ﬁ,):Z—X’ioz calculate the true variances, but y, = o not known
2% '

, "

G = Z a] estimator for 02 and o, unbiased: E(5?) = o?, n-2 degrees of freedom

n—2 o = standard error of the regression

The bigger the variance of the residuals, the lower the precision
The bigger the variance of the explanatory variable or the bigger the samplesize, the higher the
precision

Statistical properties of the OLS estimator

All GM assumptions satisfied = OLS = best linear unbiased estimator (BLUE)
Linear: estimator linear function of stochastic Y

Unbiased: expected value E(ﬁ) =B the true population
Efficient: smallest variance

Coefficient of determination (R?)

Measures how well the estimated regression line fits the sample data
Calculates the proportion of the variance of Y, explained by the variance of X,



The normality assumption (CH4)

Extra assumptions needed because OLS never gives B, and B, = hypothesis testing
Probability distribution of the parameters needed
X, deterministic = 62 weighted average of p, with weight k; fixed over repeated sampling

~

By =B, + 2 A,

Classical linear regression model assumes p, normally distributed (homoscedasticity)
CLRM = CNLRM
Y, =B, +B,X; + p,where u, ~ NID(0, %) normally independently distributed (no autocorrelation)

Properties of OLS estimator

A~

1. B, ,Ez unbiased, efficient, normally distributed
&% unbiased and 92 distributed
3. B\l and B\Z distributed independently of &
= El and Ez are BUE: efficient for entire set of unbiased estimator (linear and non-linear)
= Y,~N(B, +B,X;,0%) because linear function of deterministic X

N

Interval estimation and hypothesis testing (CHS)

Interval estimation: adding a margin to estimator such that it contains the true population with
a certain probability

PrB-8<Bp<B+d)=1-awith 0<a<l

a significance level, 1 —a confidence coefficient (stochastic)

Interpretation: when constructing confidence intervals with a confidence coefficient 1 —a, over
repeated sampling these intervals will contain the true population parameter Bin (1 —a )% of the
cases

Population parameter o2 is unknown = use 6> as an unbiased estimator

Which leads to confidence intervals

Pr, - ln—z,m/zag1 <P, =Byt fn—z,a/z/\gl) =l-a
Pr(BZ - tn—Z,a/Zagz < BZ < BZ + 111—2,(1/28@) =l-a
Hypothesis testing: formulate a hypothesis §, = B; , check whether is is possible by checking

whether B\Z is sufficiently close to B; using the statistical properties of the OLS estimator



Two-sided hypothesis

Ho : B2 = 35 proposed hypothesis = null hypothesis
Hy : B2 # 5 alternative hypothesis

One-sided hypothesis

Ho:B2<B;  or Ho: 82> 53
Hi : Ba > B3 Hy: B2 < B3
Via confidence interval: reject H, if B; does not lie within the confidence interval

Via significance test: compute test statistic under Hy: B, =p; = = (h)

and reject Hy if [t >t ,

Terminology

Statistically significant: if H, can be rejected

If t-test not significant, H, cannot be rejected

Never accept, only reject or don’t reject
type-| error: rejecting H, while correct, probability upper limit a ‘size’ as low as possible
type-II error: not rejecting H, while incorrect, probability B = 1—-f ‘power’ as low as possible
= trade-off

One-sided hypothesis test

If strong a priori indications
H, gets benefit of the doubt = theoretical proposition under the alternative hypothesis

The ‘2-t’ rule of thumb

If test statistic > 2 reject H, because ¢ = Ez/aﬁ =1,96=2

Exact significance level (p-value)

Lowest point at which H, can be rejected
Exact probability of making a type-I error
No information about the power

Analysis of variance (ANOVA)

H,: B, =0 all of the variance in Y results from variance in gy (ESS=0)
H,: B, # 0 a part of the variance in Y results from variance in X (ESS>0)



Relation between t and F-test for k, = 1
VF = 1

Some extensions (CHG)

Interpreting regression results

Y, =B, Bt

B, intercept: expected level of Y, when X=0

B, slope: expected change in Y, when X, increases by 1

e’; elasticity: an increase in X, by 1 percent induces an expected change in Y, by B,X,/Y, percent

Linear in logs model
Consider an exponential model
Y; = BiX[ et
Using a logarithmic transformation
InY; =1InB1 + B2In X + p;
and setting a =1In3;, Y =InY; and X' =In X;
Y =a+ B X+ ui

This model can be estimated using OLS, because it is linear
» in the parameters (a, 32)
» in de transformed variabels (Y, X*)

Properties: under CNLRM = X deterministic, p, ~ NID(0,c%), OLS estimators @ and 62 BUE
Interpretation: B, measures elasticity of Y, to changes in X



Semi-log model

Consider log-lin model

InY; = P1+ B Xi + i
Setting Y =1InY;

Y = B+ B X + pu

Interpretation: for a one unit absolute change in X;

» (3> measures the relative change in Y;

AY:  AInY, _AY;]Y

2= 3% T TAx T AX
» 100> measures the percentage change in Y;
100X /¥
1008 = ——
B2 AX

Consider lin-log model

Yi=p1+B2In Xi + p;
Setting X = In X;

Yi = b1+ B X" + pi

Interpretation: the absolute change in Y; is measured by

» [5 for a relative change in X;
_AY, AY W BAY
AXF T AInX T AX /X
» (32 /100 for a percentage change in X;
Futh
100AX; / X;

B2

B2 /100 =



Reciprocal model
Consider the following model
Y, =3 L i
P =i+ Bzz + i

Interpretation:
> (31 is is the asymptotic value for Y; when X; — oo

» 3> measures

gAY _AYi/AX  AYi/AX
PTA(/X) T A@A/X)/AX T (1)
AX;

— AY; = —/‘32F

!

Choice of functional form

Ideally theory based, but alignment with data mandatory = check R? but only if same
dependent variable (so no Y, with In(Y,))

Multivariate regression analysis

Estimating the sample regression function (CH7)

For OLS to be unbiased, E(u,) =0, all relevant variables have to be included in the model

If one variable (A) is strongly correlated with a variable (B) and another one (C), then the OLS
parameter for C may include impact of A on B

= A is a confounding variable, which needs to be controlled when estimating the impact of C
onB



Notation and interpretation

The population regression curve is the locus of the
conditional expectations of Y; for fixed values of X5; & Xj3;:

E (Yi| X2, X3i) = B + B2Xai + B3Xi

(> and (33 are partial regression coefficients (ceteris
paribus)

OE (Yi|Xai, X3i) By = OE (Yi|X2i, X3i)

Pz = 0Xo; ' 0X3;

» [, indicates the change in E (Y;|Xy;, X3;) for AXy; =1 and
AX;; =0, i.e. the direct or net impact of X5; on Y;

» (3 indicates the change in E (Y;|Xy;, X35;) for AX3; =1 and
AX>; =0, i.e. the direct or net impact of X3; on Y;

Even when we are only interested in the direct impact 2 of
Xo; we need to include X3; as a control variable

When estimating the following model:
Yi=a1+axXpi +¢;

the OLS estimator a2 is (in general) a biased and inconsistent
estimator of 3> in

Y: = B1+ BoXoi + B3 Xz + i

» (3, measures direct impact of X5; on Y;
(i.e. for X3; fixed)
» «p also captures part of the impact of Xj;
(i.e. Xj; is allowed to change and may be correlated with Xj;)



Least squares estimation

Orthogonal projection (two-step approach):
Step 1

Impact of FLR can be eliminated from CM by regressing CM
on FLR using OLS

CM; = by + b 3FLR; + pu;

and save the estimated residuals fi1;, with cov (FLR;, j11;) = 0
(numerical property OLS!)

Impact of FLR can be eliminated from PGNP by regressing
PGNP on FLR using OLS

PGNP; = by + by 3FLR; + piai

and save the estimated residuals jip;, with cov (FLR;, ji2;) = 0
(numerical property OLS!)

Step 2
Regressing [i1; on [ip;

H1j = aijlaj + p3;

yields a; as an estimator for the partial regression coefficient
B2 in the original multivariate model

CM; = 1 + B2PGNP; + B3FLR; + pi

a1 = > = —0.0056 in child mortality example

Multivariate ordinary least squares (one-step approach):
Parameters obtaining using LS criterion

. Y "y 2
. ~2 !
_min_ » pi = _min_ (Yi — B1 — B Xoi — 53X3f)
f815r825163 Z I }81,623:63 Z

from which three first order conditions can be derived
L-23" (Vi- B+ BoXoi+ BsXei) =0 =D pi=0
2. — 22 Xoi (Y; — B+ BaXai + [§3X3i) =0 — sziﬂi =0
3.-2) X (Yi — B1+ BoXai + B3X3i) =0 — ) Xsifli=0

Which can be uses to calculate the 3 parameters (see formula sheet)



Numerical properties of the OLS estimator
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Statistical properties of the OLS estimator

Y, =B, +B,X,, + B3 X5, + u; Where p, ~ NID(0,6?)
Regularity conditions:

e X, and X, deterministic

e #Hobservations n > #parameters to be estimated k

e Positive variance in X, and X,

e No perfect multicollinearity: |cor(X,,X;)| = |r,s| # 1
= ﬁl ,B\z and B} are BUE and normally distributed

Polynomial regression models
Quadratic specification (second order polynomial)
Yi =1+ BaXi + B3 XF
Stochastic specification
Y; = B1 + BoXi + B X7 + pi
More general: a k-th order polynomial is
Yi = Bo + BiXi + BoXP + ...+ BiX{ + pi

Interpretation

g; = B1 + 282X + 382 XP + ... + kB X1
/]




Multivariate determination coefficient R2

Indicates how well the estimated regression line fits the data by calculating the part of the
variance in Y, that is explained by the variance in X,, and X,

Adjusted determination coefficient R?

R? always increases when explanatory variables are added = not useful when comparing 2
models with different number of explanatory variables
ModifiedR? = (1-k/n)R?

. -
Relation between R? and R

R=1-(1-F

n—k

» RO<Rfork>1
» R can be negative, i.e. for R2 < (k — 1) /(n— 1)

Normality assumption and hypothesis testing (CH8)

Y, =By +ByXy; T B3Xy; T 1, where p, ~ NID(0,6%)
EI ,@ and §3 are BUE and normally distributed

Statistical properties of OLS estimator

B\l ,B\z and §3 normally distributed

(n—3)3°/c% ~ 4> wherek=df =n-3

B\l ,B\z and §3 independently distributed from Ga
t= (B\; - B[)/agi ~ s

Joint significance of all coefficients

ANOVA: H;: B,=B;=0
F-test: reject when > critical value
Relation with R*: R>=0 = F=0, R?=1 = F=w



Significance marginal contribution

Sequential regression: ANOVA check whether adding variables change the explanatory power
(ESS) significantly

Remark: changing the order in which variables are added has an impact on the results, because
adding A highly collinear with B that is already in the model will not impact the ESS a lot (thus
concluding B only significant variable), switching the variables = A only significant

General procedure F-test

Test linear restrictions H,
Estimate ‘general’, unrestricted model, compute RSS
Derive the constrained model by imposing H,
Estimate constrained model, calculate RSSy
Test the hypothesis using F-test
o (RSS, —RSS,;)/m Fo
RSS, /(n—k) )

Chow test: coefficient stability

Problem: time series = not stable over time, cross-sectional = not stable over groups/units
Assumptions:

> M1t ~ N (O 0'2) and Mo~ N (O 02)
> (11, en o ¢ are independently distributed

Procedure:
» Estimate the different models and calculate RSS;, RSS,, RSS;3
» Calculate RSSyr = RSS; + RSS; en RSSkr = RSS;
» Calculate F-statistic

g_ (RSSR—RSSur) [k o
= RSSUR /(n1 + np — 2k) k,(m +np—2k)

Limitations:
Variance of the error terms has to be constant over
sub-periods (homoskedasticity)

Test does not tell us whether rejection of Hp is due to
instability in the intercept or in the slope (see chapter 9)

Break point has to be known



Regression with dummy variables (CH9)

Necessary when variables are qualitative or categorical

Consequences for OLS

If qualitative as explanatory = model is linear = OLS appropriate

If qualitative as dependent = typically non-linear model = OLS inappropriate, estimation using
maximum likelihood (ML)

Reference category: for which no dummy is included, choice does not influence results
Example: 0 = black, 1 = white = black is reference category

Dummy variable trap

When m explanatory qualitative variables, only m-1 dummies can be included in a model with a
constant
Otherwise perfect multicollinearity

Relaxing the assumptions of CLNRM

Multicollinearity (CH10)

(Perfect) multicollinearity: (perfect) linear relation between some or all explanatory variables
Causes: dummy variables, model specification (X. and X?), large number of explanatory
variables, lack of data...

Consequences: parameters can'’t be estimated (perfect mc), estimators have larger
(co)variance, wider confidence intervals and lower t-stats

It's a sample problem: highly correlated variables, too much variance filtered out in multivariate
regression

Though OLS still unbiased and efficient (both only over repeated sampling), coefficients can’t be
estimated precisely

Detection

= measuring the degree of multicollinearity using rules-of-thumb

Compare R? with t-values (high with low)

Calculate pairwise correlation (high)

Estimate auxiliary regressions

Compute variance inflation factor (VIF) for each variable (high compared to samplesize)



Remedial measures

Cannot be solved by changing estimation method
Richer dataset
Adjust specification

Heteroskedasticity (CH11)

Variance of y, is not constant
Causes: population (error learning), data collection (outliers), specification errors (dropping

relevant variables, wrong functional form)
Consequences: OLS no longer efficient = GLS lower variance

Generalized least squares (GLS)

Assume

Y: = b1 Xoi + B Xi + pi

where Xo; = 1 Vi and E (u?) = o7 are known

» Transform the model by dividing by o;
Y; Xoi Xi . i
R Ea ey A g
gj gj oj Oj

Y = B Xgi + B X+ 1}

var (4) = E (u?) = E (12 [?) = E (1) /o? =1
» ; is homoskedastic

v

v

Assumptions CNLRM are fulfilled for the transformed model

v

OLS on the transformed model (=GLS) is BUE and
normally distributed

» OLS on original model is not efficient: var (EELS) < var (B}OLS)

Intuition for the efficiency of GLS
» OLS minimizes unweighted sum: 3" i?

» GLS minimizes weighted sum: Y w;i? with w; = 1/0,2
» more weight is given to observations for which we expect that
they will be closer to the population regression curve, i.e. for
which the variance in the error terms is smaller [Fig. 11.7]

» alternative name: weighted least squares (WLS)



Consequences for testing based on OLS

Heteroscedasticity acknowledged: valid inference, but wider confidence interval, lower
significance
Heteroskedasticity ignored: invalid inference, estimator biased and inconsistent

Detection

Calculate csf for entire population, check whether constant

In practise: use estimator ﬁf for cl? , check whether constant

Informal: intuitive(in cross-sections, heteroskedasticity rule rather than exception), graphical
Formal: Goldfeld-Quandt test (non parametric), White’s general heteroscedasticity test

(parametric)

Goldfeld-Quandt test

Assumption: csl? positively related to one of the explanatory variables

Test procedure: order observations based on X, delete ¢ (=% of pop.) obs in the middle apply
OLS to the 2 groups

Under u; ~ N and under Hp : 03 = o3 the following holds:

3
J2/‘72_‘72

/\:A —TNanc 2—k,(n—c)/2—k
52 /o2 52 (n—¢)/2 —k,(n—c)/
or
RSS:
o VR 5 Fln-c)/2—k(n-c)/2—k
- RSS - n—c —K,\n—C —
=k o

Reject Hy of homoskedasticity if A is larger than critical value



White’s general heteroscedasticity test

Test procedure:
1. Estimate the model and calculate f;
2. Estimate the following auxiliary regression

ﬁ? = o1 + aa Xy + a3 X3; + Oz4X22,- - a5X32,- + apXo; X3; + v;

3. Ho: piis homoskedastic - a2 =az3 =...=ag =0
4. White: under Hy and as n — oo
G
nR* ~ xgr
where df is equal to the number of explanatory variables
(excluding the constant) in the auxiliary regression
Homoscedasticity: R?=0
Remarks
» In principle, Hy can be tested using standard F-test, but exact
small sample distribution is unknown

» Large drop in degrees of freedom in regressions including
many explanatory variables
» Test can be applied without cross products

» A significant test statistic may also be due to specification
error (e.g. model not linear in the variables)

Remedial measures
Check slides

Autocorrelation (CH12)

There is a systematic pattern in the error terms, positive or negative

Mostly relevant for time series and panel data

Causes: inertia, transformation of the data, specification errors, non-stationarity
Consequences: assumption = , follows an AR(1) process = autoregressive of the first order,
OLS no longer efficient = GLS



Properties AR(1) process

Backward iteration:
Ht = piit—1 + Et
= p(ppt—2+ce-1) + e
= pPle—2 + €t + per—1
= p? (ppe—3 + €1_2) + €1 + per_1
= P3.Uat73 +E¢+ PEr—1 + ,02€t72

= plug + e+ per—1 + pPera+ ...+ ptle

For t — oo (since |p| < 1)

o0
Ht = Z plee_i
i=0

Expected value

E(ue)=E (Z Pigti) = ZPiE(Erﬂ') =0

=0 i=0
Variance
b 2
Var (u:) = E (u3) = E (Z p’gr_,-)
=0
= 2i 2 2 — 2i a?
:ZP'E(EH):“ Zp': 1 —?
i=0 =0 P
Covariance
o0 ) (o o] )
Cov (pepe—s) = E ((Z p’et;) (Z p’etsf))
i=0 i=0
o0 . (o ]
— Z ps+21E (53757’_) — G_2ps Z p2;
=0 i=0
— ps 02
1—p?
Correlation

Cor (ptpe—s) = p°



Detection

Runs test (nonparametric): #runs R outside confidence interval

Durbin Watson d test: d close to 0 or 4
Assumptions: X deterministic, AR(1) pattern, y, normally distributed, no lagged
dependent variables like Y, ,

Breusch-Godfrey LM test: p; # p; withi#]

If specifications errors present, model becomes inconsistent = other tests

Dynamic models

Model sluggish reaction of Y; to ‘impulses’
» Autoregressive model: add lagged dependent variable Y;_;

Ye=a+ pYi_1+ BoXe + &
» Distributed lag model: add lagged explanatory variable X; 1
Yi = a+ B2 X¢ + B3Xi—1 + &t
» Autoregressive Distributed Lag (ADL) model
Ye =a+pYi1 + BoXe + B3Xe-1 + €t

» Add deeper lags: ADL(1,1) — ADL(p, q)
Possible approach: add lags until autocorrelation in &; is removed

Note the similarity and difference between (E)GLS and ADL
» Starting from assumption of AR(1) error terms (similar for
higher order models)

v

GLS transformation implies

Yi—pYi-1= 51— pBr + Ba Xt — pBaXi—1 + pt — ppie—1
Yi=a+pYi1+ BoXe—pBaXi1+ 6

v

GLS imposes a non-linear restriction (33 = —pf32) on the
ADL(1,1) model

Standard t and F-tests not possible (but more complex
alternatives available)

v

v

Pragmatic approach: check autocorrelation in the error terms
(as this is where and how a specification error should show up)



Specification errors (CH13)

Nature of problem: exclude relevant/ include irrelevant variable, wrong functional form,
measurement errors
Consequences:
Excluding relevant variable
1. OLS is biased and inconsistent when ra3 = cor(Xp;, X3;) # 0

E (a2) = B2 + bs233
where b3y = 3 xoix3; /3 x3; (see App 13A.1)

2. Estimator variance error terms

E(EE) = o2 #Jﬁ

3. Variance OLS estimator

o2

# Var (EZ) = VIinzzj

2
Ty

ZX22,'

Var (a2) =

» Var (@) < Var (Eg) when 05 /O’i < VIF (f'ga large, o2 ~ o'i)
> Var (&z) > Var (Ez) when 62 /02 > VIF (s small, 02 > 02)
Impact on variance even when rp3 = Q!!!

Including irrelevant variable = lose accuracy
1. OLS estimator is unbiased and consistent (see App 13A.2)

E (02) = B2
E(a3)=p3=0

2. Estimator variance error terms
E (32) —02=g
3. Variance OLS estimator

& U}J. o

m
L > T XX

Var (a2) = VIF

since VIF > 1

Wrong functional form
OLS estimator biased and inconsistent




Measurement errors in dependent variable
1. KK is unbiased and consistent

E(B;) =5

2. Estimator variance error terms

E (52) = of = Var (u; + e1;) = 02 + 02

3. Variance OLS estimator increases

2 2
e + Tg

Var (E;) = 2 > Var (52) _ gi%

2i

Measurement errors in explanatory variable
1. OLS is biased and inconsistent since

E(X‘-*U,') = E((X, ~+ e,—) (,UJ,' — [326‘,')) = —ﬁgE (6,2) = —[‘320'5

This is an endogeneity issue

1

e see App. 13A.3
Ty FEeeion. U

— pliHl (52) = ,32
plim (52) < B
2. Estimator variance error terms

E (33) = o2 = Var (uj — fr&;) = Jﬁ + B30

3. Variance OLS estimator increases

Var (E;) = Uﬁg—f;ag > Var (Ez) = ’212.

Model selection criteria

Be consistent with the theory and data, encompassing, establish causality

Purist: specification based on theory, then check whether irrelevant variables are included,
general-to-specific approach

= often too strict

Data mining: only variables that are significant are tested and added, specific-to-general, to fit
the data as well as possible

= risk: significant correlations but not necessarily causal relations, real significance no longer
nominal significance level

Solution: set part of sample aside, compute a next observation, compare to observation you set
aside and check whether model fits the data



Detection

Ramsey’s RESET test: add non-linear transformations of )A’l. to Y, use F-test, rejecting H, =
specification error
Lagrange Multiplier (LM) test: add non-linear transformations of X to ﬁi , compute nR?, reject H,

if > critical value
Forecast y> test: use one part to estimate, use the other part to test the out-of-sample

performance

Endogeneity (CH18-20)

Reverse causality: simultaneous equation model with at least 2 endogenous variables that
influence each other
Consequences: X stochastic and X; and p, both dependent = OLS inconsistent

_ plim £ 3" xipi  E (uix;)
olim Y kipi = . - i
I Z f plim = 3~ x? E(x7) 7




